
This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

Jedrzej Rybicki (j.rybicki@fz-juelich.de), Albertin, Loïc (loic.albertin@atos.net)
Jorge Ejarque (jorge.ejarque@bsc.es)

14th September 2022

HPC WORKFLOWS AS A SERVICE AND SOFTWARE
STACK HANDS-ON

mailto:j.rybicki@fz-juelich.de
mailto:loic.albertin@atos.net
mailto:jorge.ejarque@bsc.es

2

Hands-on setup

For this hands-on you need:
• A computer

• An internet connection

• A user in an HPC cluster and eFlow4HPC services

3

First things first ensure that you can
reach BSC platforms
ssh -o PreferredAuthentications=password -o
PubkeyAuthentication=no <user_name>@nord3.bsc.es

Create some directories that will be used
later

mkdir -p /gpfs/projects/nct01/<user_id>

mkdir -p /home/nct01/<user_id>/data/inputs

mkdir -p /home/nct01/<user_id>/data/results

4

Get the HPCWaaS CLI from github
Explore https://github.com/eflows4hpc/hpcwaas-api/releases/tag/v0.1.0 to
get a binary that matches your computer.

https://github.com/eflows4hpc/hpcwaas-api/releases/tag/v0.1.0

5

Alternatively get the docker version
Simply run:

docker run -ti --rm ghcr.io/eflows4hpc/hpcwaas-api:main-cli help

this is equivalent to

./waas help

We will use the later form in this hands-on.

6

Generate an SSH keypair
./waas --api_url https://eflows4hpc.bsc.es/waas -u <user>:<password> ssh_keys
key-gen

INFO: Below is your newly generated SSH public key.

INFO: Take note of it as you will not see it again.

INFO: You are responsible for adding it to the authorized_keys file on the systems you want to run your
workflows.

INFO: SSH key ID: 31…3f

INFO: SSH Public key: ssh-rsa AAA…mH

Credentials are the same as for your bsc account.
The private key is stored in Vault and never provided to you.
Copy the public key on nord3 in ~/.ssh/authorized_keys file to allow access to
your account by the stack.
Also copy the SSH Key ID that identifies your keypair and which is required to
deploy and run workflows.

7

Now let’s create, configure and deploy a
workflow

The goal in this hands-on is not to learn how to develop an
application in TOSCA.
For today we will focus on how to use the stack.

We did a TOSCA tutorial during the first year of
eFlows4HPC.
This tutorial is publically available on github:
https://github.com/eflows4hpc/tosca-tutorial

https://github.com/eflows4hpc/tosca-tutorial

8

Now let’s create, configure and deploy a
workflow

Navigate to https://eflows4hpc.bsc.es/alien/#/

And log into Alien4Cloud. Credentials are the same as your BSC account.
Click on “Applications” on top left tab, then click on “New Application”.

https://eflows4hpc.bsc.es/alien/#/

9

Now let’s create, configure and deploy a
workflow
Give a name (should be unique) to your application. And initialize it from the
minimal workflow template

10

Now let’s create, configure and deploy a
workflow

11

Now let’s create, configure and deploy a
workflow

12

Now let’s create, configure and deploy a
workflow
At this point you can have a break to explore the topology of your
application.
But make sure to not change it ;)

13

Now let’s create, configure and deploy a
workflow

14

Now let’s create, configure and deploy a
workflow

user_id is the user account that will be use to connect to
nord3 to transfer the generated container image (it’s your
BSC account)
vault_id is the SSH keypair id you generated using waas CLI -
remember we asked to keep it next to you ;)
container_image_transfer_directory is where the image will be
transferred. Keep in mind that you are the developer for this
workflow but not necessarily the unique end-user. So you
should store it in a shared folder. On nord3 the path
/gpfs/projects/nct01/<user_id> will do. The directory SHOULD
EXIST before deploying.
mid is a metadata id that is used to store the results of the
workflow execution to the data catalogue. For today it
should be 19fcf27e-6727-49a6-b029-b08c59e8e38b

15

Now let’s create, configure and deploy a
workflow

16

Now let’s create, configure and deploy a
workflow

17

Now let’s create, configure and deploy a
workflow

18

Now as a Developer let’s test our
workflow

Select the “exec_job” workflow and fill inputs:
user_id & vault_id are the account credential used to run the
job just use the same values as just before deploying
oid is an object id in the data catalogue referencing the
workflow input data. For today it should be
2c2463377aac4aa59381c6b06fe800f3
target_path is the path to a directory where the DLS will store
input data and will be used as input for the PyCOMPSs job.
Typically use some directory in your home, like
/home/nct01/<user_id>/data/inputs . This directory SHOULD
exist before running the workflow.
source_path is the path to a directory where the PyCOMPSs job
produces results and which is uploaded to the data catalogue
by the DLS. Typically use some directory in your home, like
/home/nct01/<user_id>/data/results . This directory SHOULD
exist before running the workflow.
num_nodes is the number of compute nodes used to run the
PyCOMPSs job. Use “2” for this input.

19

Now as a Developer let’s test our
workflow

Select the “exec_job” workflow and fill inputs:
user_id & vault_id are the account credential used to run the
job just use the same values as just before deploying
oid is an object id in the data catalogue referencing the
workflow input data. For today it should be
2c2463377aac4aa59381c6b06fe800f3
target_path is the path to a directory where the DLS will store
input data and will be used as input for the PyCOMPSs job.
Typically use some directory in your home, like
/home/nct01/<user_id>/data/inputs . This directory SHOULD
exist before running the workflow.
source_path is the path to a directory where the PyCOMPSs job
produces results and which is uploaded to the data catalogue
by the DLS. Typically use some directory in your home, like
/home/nct01/<user_id>/data/results . This directory SHOULD
exist before running the workflow.
num_nodes is the number of compute nodes used to run the
PyCOMPSs job. Use “2” for this input.

20

Now as a Developer let’s test our
workflow

Finally, click on the “Launch” button to run the workflow.

You can follow the workflow execution exactly like we did for the workflow deployment
(workflow & logs tabs).

21

Expose your workflow to the HPCWaaS
API

Once you tested that everything works properly, you could choose to expose your workflow to
end-users.
Go back to the main page of your application by clicking on its name on the top left corner

22

Expose your workflow to the HPCWaaS
API

Use the tags section to configure the way the
HPCWaaS API will interact with your application.
hpcwaas-workflows is a comma-separated list of
workflows of your application that should be
exposed to the API. In the case of the minimal
workflow use “exec_job” as value.

hpcwaas-authorized-users is a comma-separated
list of users that are authorized to use this
workflow. If this tag is not set every
authenticated user can access your workflow. To
keep things readable please specify at least your
username here.

Now we are done with the Developer role,
let’s switch to the end-user role

24

Interacting with the HPCWaaS API with the CLI

For the end-user the first thing to do is normally to
generate an SSH keypair just like you did on slide 6.

You can do it again or just use the one you previously
generated.

25

Let list available workflows
./waas --api_url https://eflows4hpc.bsc.es/waas -u <user>:<password> workflows
list

As a result you will get various information about
workflows. The most important one is the Workflow ID as
it uniquely identifies a workflow and allow to trigger an
execution.

26

Trigger an execution on a given workflow
./waas --api_url https://eflows4hpc.bsc.es/waas -u <user>:<password> workflows
trigger -f -i user_id=<username> -i vault_id=<SSH_KEYPAIR_ID> -i
oid=2c2463377aac4aa59381c6b06fe800f3 -i
target_path=/home/nct01/<username>/data/inputs -i
source_path=/home/nct01/<username>/data/results -i num_nodes=2 <workflow_id>

Remember that target_path & source_path SHOULD EXIST
before running the workflow.

27

Monitor a workflow an execution

The -f flag on the “trigger” command allows to follow the
execution by regularly refreshing its status from the
HPCWaaS API.
Another way to do it is to use the “execution status”
command on the Execution ID returned by the “trigger”
command.
./waas --api_url https://eflows4hpc.bsc.es/waas -u <user>:<password> executions
status <Execution_ID>

“execution status” command also have its own -f flag

28

Cancel a workflow an execution

Cancelling a running execution can be done using the
“executions cancel” command
./waas --api_url https://eflows4hpc.bsc.es/waas -u <user>:<password> executions
cancel <Execution_ID>

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

www.eFlows4HPC.eu

.

@eFlows4HPC eFlows4HPC Project

That’s all folks!

http://www.eflows4hpc.eu/
https://twitter.com/eFlows4HPC
http://www.linkedin.com/company/eflows4hpc

