
This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

14th September 2022

INTRODUCTION TO HPC WORKFLOWS AS A
SERVICE AND SOFTWARE STACK

(Session 1)

2

Outline
• Overview
• Session 1: eFlows4HPC Software stack and HPCWaaS (20 min

each)
• Part 1: Integrating different computations in PyCOMPSs
• Part 2: HPC ready container images
• Part 3: Data Pipelines and Data Logistics Service
• Part 4: TOSCA Orchestration and HPCWaaS

• Session 2: Other Software Components (15 min each)
• EDDL for ML in Project Pillars
• Ophidia in Project Pillars
• dataClay split

• Hand-on session (45 min)

3

Project Overview

A European workflow platform that enables
the design of complex applications:

• integrating HPC processes, data analytics
and artificial intelligence

• enabling the accessibility and reusability of
applications to reduce the time to solution

4

HPC Site 2

Motivation

Cloud Infrastructure

User’s
Comunities

Workflow
Developers

HPC Site 1

system
administrators

system
administrators

Cloud Infrastructure

Federated HPC
Infrastructure

H
PC

 W
o

rk
fl

o
w

 a
s

a
Se

rv
ic

e

User’s
Comunities

Workflow
Developers

register

share

use
eFlows4HPC Software

Stack

Manual deployment

eFlows4HPC approachCurrent approach

5

eFlows4HPC Software Stack

HPC Workflow as a Service

Model
Repository

Software Catalog

Workflow
Accessibility/
Re-usability

Dynamic
Workflow
Definition

Efficient
Distributed
Execution

HPC Kernels
& Simulators

ML
Frameworks

Workflow
Deployment

Holistic Distributed Execution

Data
Management

Workflow
Registry

Ystia Orchestrator

PyCOMPSs runtime

Hecuba
UNICORE

Data
Logistics Service

HPC, DA & ML Compositions

PyCOMPSs Programming Model Extended TOSCA

DataClay

HPDA
Frameworks

Workflow
Description

Data
Catalog

Data sets
registry

Data Logistic Pipelines

ML
Models

Software Stack overview

Image Creation

6

eFlows4HPC software stack and HPCWaaS

Gateway Services

Repositories for re-usabilityHPC WaaS Interface

Computing Infrastructure

Data
Logistics Service

Ystia
Orchestrator

Workflow

Alien4Cloud

Runtime Components

Execution
API

Data
Catalog

HPDA/ML Frameworks

PyCOMPSs Hecuba DataClay

Image Creation

Software
Catalog

Workflow
Registry

• Gateway services
• Components deployed outside the

computing infrastructure.
• Managing external interactions and

workflow lifecycle

• Runtime Components
• Deployed inside the computing

infrastructure to manage the workflow
execution

7

Dynamic Workflow Description

TOSCA Description

eFlows4HPC Gateway Services

Workflow
Registry

Alien4Cloud
Software
Catalog

3. Deploy

Data
Catalog

PyCOMPSs
Code

Data Logistics
Pipelines

endpoint to invoke

the Workflow

1. Create
Workflow

4. share

Workflow development overview

2. Store

Computational Workflow as a simple python script.
Invocation of software described in the Software Catalog

Description of data movements as python functions.
Input/output datasets described at Data Catalog

Topology of the components involved in the workflow
lifecycle and their relationship.

Execution
API

8

HPC

Container

Minimal workflow

EUDAT

GPFS

PyCOMPSs workflow

HPC SimHPC SimHPC Sim
ML
Train

COMPSs RT

TOSCA

setup

Execute

config

Install

Image
Creation

Simple example but covering
main functionalities

Part 1

Part 2
Part 3

Part 4

Data Logistic
pipelines

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

Jorge Ejarque

Part 1: Integrating different computations in
PyCOMPSs

10

Motivation

• Complex workflows are composed by the execution of
different software

• Workflow Developers dedicating time to develop glue
code to integrate different software

• Reusable way to describe software executions

11

PyCOMPSs Overview

• Sequential programming with simple linear
address space

• Standard python + annotations/hints
• To identify tasks and directionality of data

• Builds a dynamic task graph at runtime to
infer potential concurrency

• Agnostic of computing platform
• Enabled by the runtime for clusters, clouds

and containers

12

Computing Infrastructure
Software Catalog

Software Invocation description

Software Description

Installation
description invocation.json

Container Image
Creation

Workflow Code

PyCOMPSs
Code

COMPSs runtime Software
Invocation

• Converts a python function to software
invocation as a PyCOMPSs task

• Reused in different workflows

{
 "type":"mpi",
 "properties":{
 "runner": "mpirun",
 “processes”: “$SW_PROCS”
 "binary": "mpi_sofware.x",
 "params": "-d {{param}}",
 “working_dir”: “{{working_dir}}”},
 "prolog":{
 "binary":"mkdir",
 "params":"{{working_dir}}"},
 "epilog":{
 "binary":"tar",
 "params":"zcvf {{out_tgz}}" {{working_dir}}},
 "constraints":{
 "computing_units": $SW_THREADS}
}

@software(config_file="invocation.json")
def mpi_exec(work_dir, param, out_tgz):
 pass

#Call to the task function:

mpi_exec('my_folder', 'hello_world')

mkdir working_dir
cd working_dir
export OMP_NUM_THREADS=$SW_THREADS
mpirun -n $SW_PROCS mpi_software.x -d param
tar zcvf out_tgz working_dir

13

Interfaces to integrate HPC/DA/ML

@software(config_file="mpi_w_params.json")
@task()
def task_mpi_w_params(work_dir, param_d):
 pass

#Call to the task function:

task_mpi_w_params('my_folder', 'hello_world')

{
 "type": …,
 "properties":{
 … },

 "prolog":{
 … },

 "epilog":{
 … },

 "constraints":{
 …. },

 “container:”{
 … }
}

Execution type and properties

Command to run before and after
the execution.

resource required by the execution

Container containing the required
software for the execution

Mandatory

Optional

14

Supported Types

Execution
Type

Implementation Properties

binary pass binary, params, working_dir

mpi pass runner, binary, params, processes, ppn, working_dir

python runner, processes, ppn, working_dir

mpmd_mpi pass runner, ppn,
programs":[{binary, params, processes}]

15

Other properties

Property Argument

constraints computing_units, memory,...

prolog/ epilog binary, params working_dir

container image, engine

16

Using task parameter or environment variables

• Task parameters:
• can be referred as {{param_name}} in:

• execution type properties
• epilog/prolog parameters

• Environment Variables:
• can be referred as $ENV_VAR_NAME in:

• execution type properties
• epilog/prolog parameters
• constraints
• container

Examples

17

18

Examples
{
 "type":"mpmd_mpi",
 "properties":{
 "ppn":$CPUS_PER_NODE,
 "runner":"mpirun",

 “working_dir”: “{{working_dir}}”
 "programs":[
 {
 "processes": “$FESOM_PROCS”,
 "binary":"$FESOM_EXEC",
 "params":"{{fesom_param}}"
 },
 {
 "processes": “$OIFS_PROCS”,
 "binary":"$OIFS_EXEC",
 "params":"{{oifs_param}}"
 }
]
 }
}

@software(config=fesom_oifs_mpmd.json')
@task(log=FILE_OUT_STDOUT)
def simulation(working_dir, fesom_param, oifs_param, log):
 #mpirun -n X -ppn Y fesom.x fesom_param : -n M -ppn oifs oifs_param > log
 pass

sim_cfgs=generate_simulation_cfg()
results = []
for cfg in sim_cfgs:

simulation (cfg.wdir, cfg.fesom_param, cfg, oifs_param, “out.txt”)
result = post_process(“out.txt”)
results.append(result)

evaluate(results)

19

Examples
{
 "type":"mpi",
 "properties":{
 "runner": "mpirun",
 “processes”: “$MPI_PROCS”
 },
 "prolog":{
 "binary":"ln",
 "params":"-s {{rom}} RomParameters.json"
 },
 "epilog":{
 "binary":"rm",
 "params":"RomParameters.json"
 },
 "constraints":{
 "computing_units": $OMP_THREADS
 }
}

{
 "type":"binary",
 "properties":{
 “binary”: “gmx”
 "params": "mdrun -s {em}} -e {{em_energy}}",
 },

 "constraints":{
 "processors": [{“processorType”: “GPU”,
“computingUnits”:1}]
 }

 “container”:{
 “engine” : ”SINGULARITY”
 “image” : “/path/to/gromacs.sif”
 }
}

@software(config=gromacs_mdrun_gpu.json')
@task(em=FILE_IN, em_energy=FILE_OUT)
def energy_minimization(em, em_energy):

pass@software(config=kratos_rom_mpi.json')
@task(rom=FILE_IN, returns=1)
def execute_rom(parameters, rom):
 “”” kratos python mpi code “””
 return result

singularity exec -nv /path/to/gromacs.sif \
 gmx mdrun -s /path/to/em -e /path/to/em_energy

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

www.eFlows4HPC.eu

.

@eFlows4HPC eFlows4HPC Project

Questions

http://www.eflows4hpc.eu/
https://twitter.com/eFlows4HPC
http://www.linkedin.com/company/eflows4hpc

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

Jorge Ejarque

Part 2: HPC ready containers

22

HPC ready containers

Builder Machine (ISA x86_64)

receipt

deb/rpm installation

Container:
x86_64 (generic compilation)
no processor optimizations

Builder Machine (ISA x86)

Qemu

buildx –platform ppc64le

receipt

eb GROMACS-fosscuda-2018 –robot \
-optarch=”GCC:march=power9”
or
spack install openmpi@3.1.1 cuda@9.0 \
gromacs+mpi+cuda –platform=power9

Container:
ppc64le with Power9 optimizations
with specific toolchain (gcc +mpi)

23

Software Catalog
Workflow Registry

HPC Software Deployment

Builder Machine
buildx

Container
Image

container-registry

wf/step
+

target machine
Container Image
creation service

Dockerfile

Query existing
images

Singularity
Image

Software Description

package.py
(spack)

invocation.json

Workflow

push

Building
Environ.

step
spack.yaml
(req. sw.)

PyCOMPSs
code

TOSCA

24

Software Catalog

HPC Software Deployment

Software Description

package.py

class Compss(Package):
 url = "https://compss.bsc.es/repo/sc/stable/COMPSs_2.10.tar.gz"
 version('2.10', sha256='...', preferred=True)
 ….
 # dependencies.
 depends_on('python')
 depends_on('openjdk')
 depends_on('boost')
 …
 def install(self, spec, prefix):
 install_script = Executable('./install')
 install_script('-A', '--only-python-3', prefix.compss)

 def setup_run_environment(self, env):
 env.set('COMPSS_HOME', self.prefix.compss)
 env.prepend_path('PATH', self.prefix.compss + '/Runtime/scripts/user')

 def setup_build_environment(self, env):
 ….

class Kratos(CMakePackage):
…
#variant
variant('mpi', default=False, description='Builds a MPI version of the library')
depends_on('mpi', when='+mpi')
…
def cmake_args(self):

 args = []
 if self.spec.variants['mpi'].value == True:
 args.append('USE_MPI=ON')
 else:
 args.append('USE_MPI=OFF')
 return args

….

class PyDislib(PythonPackage):
…
if you need specific versions.
depends_on('python@3:', type=('build', 'run'))
depends_on('py-scikit-learn@0.23^py-scipy@1.5,type=('run'))
…

https://spack-tutorial.readthedocs.io/en/latest/tutorial_packaging.html#creating-the-package-file

https://spack-tutorial.readthedocs.io/en/latest/tutorial_packaging.html#creating-the-package-file

25

Workflow Registry

HPC Software Deployment

Workflow

spack.yaml
(req. sw.)

spack:
 specs:
 - compss
 - py-dislib
 - kratos

spack:
 specs:
 - compss
 - py-dislib
 - kratos
 concretization: together
 view: /opt/view
 packages:
 all:
 target: ['sandybridge']

26

Container Creation API

• Request the image creation
Request Response

jorgee@localhost:~/eFlows4HPC/git/image_creation> ./client.sh <user> <passwd>
https://<image_creation_url> build <request.json>
Response:
{"id":"f1f4699b-9048-4ecc-aff3-1c689b855adc"}

27

Container Creation API
• Check build status

Request Response

 jorgee@localhost:~/eFlows4HPC/git/image_creation> ./client.sh <user> <passwd>
https://<image_creation_url> status f1f4699b-9048-4ecc-aff3-1c689b855adc
Response:
{"filename":"image_sandybridge.sif","image_id":"ghcr.io/eflows4hpc/image_sandybridge","message":null,"
status":"FINISHED"}

28

Container Creation API
• Get generated Image

Request Response

jorgee@localhost:~/eFlows4HPC/git/image_creation> ./client.sh <user> <passwd>
https://<image_creation_url> download <image_file.sif>

HTTP request sent, awaiting response... 200 OK
Length: 2339000320 (2.2G) [application/octet-stream]
Saving to: ‘image_file.sif’

image_file.sif 0%[] 4.35M 550KB/s eta 79m 0s

Demo

29

30

Image creation simple CLI
jorgee@localhost:~/eFlows4HPC/git/image_creation> ./client.sh test T3st22 https://bscgrid20.bsc.es
build test_request.json
Response:
{"id":"f1f4699b-9048-4ecc-aff3-1c689b855adc"}

jorgee@localhost:~/eFlows4HPC/git/image_creation> ./client.sh test T3st22 https://bscgrid20.bsc.es
status f1f4699b-9048-4ecc-aff3-1c689b855adc
Response:
{"filename":"reduce_order_model_sandybridge.sif","image_id":"ghcr.io/eflows4hpc/reduce_order_model_san
dybridge","message":null,"status":"FINISHED"}

jorgee@localhost:~/eFlows4HPC/git/image_creation> ./client.sh test T3st22 https://bscgrid20.bsc.es
download reduce_order_model_sandybridge.sif
--2022-05-24 16:01:28--
https://bscgrid20.bsc.es/image_creation/images/download/reduce_order_model_sandybridge.sif
Resolving bscgrid20.bsc.es (bscgrid20.bsc.es)... 84.88.52.251
Connecting to bscgrid20.bsc.es (bscgrid20.bsc.es)|84.88.52.251|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2339000320 (2.2G) [application/octet-stream]
Saving to: ‘reduce_order_model_sandybridge.sif’

reduce_order_model_sandybridge.sif 0%[] 4.35M 550KB/s eta
79m 0s

31

Next Steps

• Software Integration
• Introduce data transformations
• Other task types if required

• Image Creation
• Include versioning
• Improve CLI
• Test with MPI versions

• concretize with an specific MPI version
• Include other devices GPUs
• Populate repositories

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

www.eFlows4HPC.eu

.

@eFlows4HPC eFlows4HPC Project

Questions

http://www.eflows4hpc.eu/
https://twitter.com/eFlows4HPC
http://www.linkedin.com/company/eflows4hpc

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

Jedrzej Rybicki (j.rybicki@fz-juelich.de)

Part 3: Data Pipelines and Data Logistic Service

mailto:j.rybicki@fz-juelich.de

34

Data Logistics Service Backgrounds

• Computations require (lots) of data
• DLS: fuel the scientific calculations with required data
• DLS pipelines describe how the data are moved

• Formalization of the data movements
• Reproducibility (FAIR)
• Integrated with Data Catalogue

• DLS is part of eFlows4HPC Workflow-as-a-Service
• Minimal Workflow

• Stage-in and –out
• Singularity image transfer

35

Apache Airflow

• Apache Airflow: a platform to programmatically
author, schedule and monitor workflows

• Workflows (pipelines) as directed acyclic graphs (DAGs)
of tasks

• ⇒ i.e. tasks depend on each other
• Airflow Scheduler executes your tasks on an array of

Workers
• User interface to visualize pipelines, monitor progress,

and troubleshoot issues when needed

36

Tasks

• Task: unit of execution in Airflow
• Types:

• Operators
• Sensors

• Task instances (for each DAG run)
• Task relationships (classical):

• Task1 >> Task2 >> Task3
• TaskFlow
• or mixture of both

37

Tasks: Operators

• BashOperator - executes a bash command
• PythonOperator - calls an arbitrary Python function
• EmailOperator - sends an email

Contributed:
• SimpleHttpOperator, SSHOperator, (S)FTPOperator
• MySqlOperator, PostgresOperator, MsSqlOperator,

OracleOperator
• DockerOperator, HiveOperator, SingularityOperator,

Kubernetes
• SlackAPIOperator, DiscordOperator

38

Scheduling

• schedule_interval - e.g. @hourly,
timedelta(days=1), or cron expressions 0 0 1 * *

• start_date (and optionally end_date) - defines series
of intervals

• catchup=True - indicates if the scheduler should create
a DAG run for each interval that has not been run

• execution_date - injected into task is not the current
time but rather a indication of the interval

• SLAs: new feature allows to define maximum time a
task should take

• Pause/unpause

39

DLS Architecture

40

Intro: Minimal Workflow

• Idea: model a typical computation workflow across
Pillars

• serves as a guinea pig for the solution and
infrastructure

• basis for concrete Pillars’ implementations
• Overview

41

Stage-In Pipeline

• Move data into processing facility
• Source: B2SHARE
• Target: BSC (SSH)

• Phases
• Extract list of files from a repository object
• Upload to target

• Challenges:
• Credentials management
• Genericity

42

Challenge: Generic pipelines

• Genericity
• same data stage-in workflow

could be used to transfer
different data

• Using Data Catalogue
• Pipeline input is id of a data set

from Data Cat
https://datacatalogue.eflows4hpc.eu/storage.h
tml?type=dataset&oid=23a1ed6b-682a-4682-887
e-e3c17b9d69ea
https://datacatalogue.eflows4hpc.eu/dataset/2
3a1ed6b-682a-4682-887e-e3c17b9d69ea

• Metadata management (in a later
step)

https://datacatalogue.eflows4hpc.eu/storage.html?type=dataset&oid=23a1ed6b-682a-4682-887e-e3c17b9d69ea
https://datacatalogue.eflows4hpc.eu/storage.html?type=dataset&oid=23a1ed6b-682a-4682-887e-e3c17b9d69ea
https://datacatalogue.eflows4hpc.eu/storage.html?type=dataset&oid=23a1ed6b-682a-4682-887e-e3c17b9d69ea
https://datacatalogue.eflows4hpc.eu/dataset/23a1ed6b-682a-4682-887e-e3c17b9d69ea
https://datacatalogue.eflows4hpc.eu/dataset/23a1ed6b-682a-4682-887e-e3c17b9d69ea

43

DEMO
HTTPS://DATALOGISTICS.EFLOWS4HPC.

EU/

https://datalogistics.eflows4hpc.eu/
https://datalogistics.eflows4hpc.eu/

44

Data Logistics Service
Summary:

• Minimal workflow
• Reproducible data pipelines: Improvements in transparency

and turn-around times
• Help in tedious tasks ⇒ more time for actual science
• Towards self-service:

• Automatic deployment + deps management
• PythonOperator + BashOperator (reuse of existing solutions)

Outlook:
• Pillars’ workflows
• Integrations: Model Repository + WP2 Storages
• Cloud-based processing
• Prefect?

• High-reaching compatibility on dag/pipeline-level

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

www.eFlows4HPC.eu

.

@eFlows4HPC eFlows4HPC Project

Questions

http://www.eflows4hpc.eu/
https://twitter.com/eFlows4HPC
http://www.linkedin.com/company/eflows4hpc

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

Albertin, Loïc (loic.albertin@atos.net)

Part 4: TOSCA Orchestration and HPCWaaS

mailto:loic.albertin@atos.net

47

Minimal workflow - The big picture

48

Minimal workflow - components
• HPCWaaS API/CLI: interface for the end-user that allows to control

workflow executions

• Vault: Secret store used to securely store SSH credentials

• Alien4Cloud: interface for workflows developers to design & deploy
workflows / also integrated with HPCWaaS API to manage executions

• Yorc: high level orchestration engine driven by Alien4Cloud

• DLS: orchestration engine for data movements (Datasets, images)

• PyCOMPSs: orchestration engine for computations

• Container Image Builder service: build container images fitting
infrastructure constraints

• Container registry: store container images

• Data Catalogue: Store for datasets and computation results metadata

49

Minimal workflow - users

2 main users:

• The Developer is responsible for creating applications
/ high level workflows, to deploy and expose them to
the end-user

• End User essentially trigger and monitor executions of
the workflows deployed by the developer.
To do that he uses the HPCWaaS API which is
specifically designed to abstract the complexity of
using the orchestration stack

Developer point of view

50

51

Minimal Workflow - seen as Developer

52

Minimal Workflow - TOSCA Modelization

53

eFlows4HPC TOSCA Components

54

TOSCA Components - DLS hierarchy

55

Minimal Workflow - application deployment

Application deployment workflow (done once)

56

Minimal Workflow - resources for developers

TOSCA components:

• DLS: https://github.com/eflows4hpc/dls-tosca

• PyCOMPSs: https://github.com/eflows4hpc/pycomps-tosca

• Image Creation: https://github.com/eflows4hpc/image_creation
(tosca sub-folder)

• Minimal Workflow template:
https://github.com/eflows4hpc/workflow-registry
(minimal_workflow/tosca sub-folder)

TOSCA resources:
• https://alien4cloud.github.io/#/documentation/3.5.0/devops_gui

de/dev_ops_guide.html
• https://github.com/eflows4hpc/tosca-tutorial

https://github.com/eflows4hpc/dls-tosca
https://github.com/eflows4hpc/pycomps-tosca
https://github.com/eflows4hpc/image_creation
https://github.com/eflows4hpc/workflow-registry
https://alien4cloud.github.io/#/documentation/3.5.0/devops_guide/dev_ops_guide.html
https://alien4cloud.github.io/#/documentation/3.5.0/devops_guide/dev_ops_guide.html
https://github.com/eflows4hpc/tosca-tutorial

End-User point of view

57

58

Minimal workflow - seen as End user

59

Minimal Workflow - business workflow

End-User workflow (multiple executions)

60

HPCWaaS main CLI commands

• waas workflows list
• waas workflows trigger
• waas executions status
• waas executions cancel
• waas ssh_keys key-gen

Demo of the end-user workload

61

62

Minimal Workflow - resources for end-users

HPCWaas code/binaries:
https://github.com/eflows4hpc/hpcwaas-api

https://github.com/eflows4hpc/hpcwaas-api

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

www.eFlows4HPC.eu

.

@eFlows4HPC eFlows4HPC Project

Thank you

http://www.eflows4hpc.eu/
https://twitter.com/eFlows4HPC
http://www.linkedin.com/company/eflows4hpc

