
This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

14th September 2022

INTRODUCTION TO HPC WORKFLOWS AS A
SERVICE AND SOFTWARE STACK (Session 2)

2

Outline

• Session 2: Other Software Components (15 min each +5
mins questions)

• EDDL for ML in Project Pillars
• Ophidia for HPDA in Project Pillars
• dataClay split

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

Jose Filch (UPV)

Part 1: EDDL for ML in Project Pillars

4

What is EDDL
• EDDL: European Distributed Deep Learning Library
• Open Source library (available on GitHub)
• Enables definition, training and inference of neural network

models
• Written in C++
• Multi-device support: CPU, GPU, FPGA
• Tensor operations support
• Distributed training support

• Abstracts away infrastructure complexity
• pyEDDL: python wrapper

• OpenSource (available on GitHub)
• Both developed in the framework of DeepHealth project

5

EDDL Components

• Tensors
• N-dimensional memory structures used in a neural network

model
• Tensors have an associated buffer where data is stored
• Tensors have a shape and are assigned to an specific device

(CPU, GPU, FPGA)
• Most frequent tensor operations implemented

• Layers
• Layers of the neural network, each type has an associated

class
• Layers have pointers to tensors to store inputs, outputs,

weights, bias, additional temporary buffers (gradients, …)

6

EDDL Components
• Computing Services

• Target device to run the training/inference process
• Tensors allocated in the target device & accessed from its memory
• Devices: CPU (Eigen), GPU (CUDA, CUDNN), FPGA (OpenCL)
• Extension to COMPSs for distributed training

• Node-level parallelism exploited by EDDL
• Inter-node communication and synchronization exploited by COMPSs

• Neural network specific
• Looses, metrics, regularizers, initializers, optimizers, …

• API
• User level programming interface to abstract away all EDDL library
• Documentation: https://deephealthproject.github.io/eddl/

7

EDDL Example (C++)
• MNIST simplistic case (dense layers)
• Steps:

• Download dataset
• Define network
• Build model

• Optimizer
• Losses
• Metrics
• Computing service

• Load dataset into tensors
• Preprocessing
• Fit the model
• Evaluate the model
• Delete memory resources

8

Coarse and Fine-grained Training

Coarse training simplifies the task and runs for a number of epochs using the train dataset

Fine-grained training enables sophisticated training process, with a rich set of
alternative methods

9

Computing Service

Computing can be moved to any
set of devices by using the
computing service method.

Functions exist to move
computing between devices.

10

• Trasparent distributed training process
• MPI and NCCL
• Intranode and internode
• Different synchronization policies

• Fully synchronous
• Synchronization every x batches
• Dynamic (bounded communication

overhead)

• Almost linear scalability shown on
Power9 cluster

Distributed Training (MPI/NCCL)

Distributed Training (native MPI support)

GPU

MEM

CPU

MEM

GPU

MEM

GPU

MEM

GPU

MEM

GPU

MEM

CPU

MEM

GPU

MEM

GPU

MEM

GPU

MEM

GPU

MEM

CPU

MEM

GPU

MEM

GPU

MEM

GPU

MEM. . .

IBA HCA IBA HCA IBA HCA

global batch

local
batch

11

Data parallelism (Model replicated on devices and dataset fits on every node disk)
Every node runs a batch: Global_batch_size = 𝞢 local_batch_sizei
Every x batches the models are synchronized (if x=1 mathematically equivalent)

12

model model model model

model model model model

model reduction and broadcast

GPU
Lo

ca
l t

ra
in

in
g

Distributed Training (native MPI support)
GPU

MEM

CPU

MEM

GPU

MEM

GPU

MEM

GPU

MEM

GPU

MEM

CPU

MEM

GPU

MEM

GPU

MEM

GPU

MEM

GPU

MEM

CPU

MEM

GPU

MEM

GPU

MEM

GPU

MEM. . .

IBA HCA IBA HCA IBA HCA

Every node (CPU or GPU) trains a batch and synchronizes parameters with AllReduce
Efficient NCCL (NVIDIA Collective Communication Library) – intra (NVLINK) and inter node (IBA).
No ineficient memory copies GPU-CPU and viceversa. Faster than most efficient MPI impl.
Most efficient option: CuDNN + MPI + NCCL (available in EDDL)global batch

AllReduce

local
batch

13

14

EDDL Compatibility (via ONNX)

• Models can be saved and loaded in ONNX format
• Enables compatibility with other tools

• A binary format (EDDL proprietary) exists

15

EDDL in eFlows4HPC

EDDL is one of the ML tools in the eFlows4HPC
Software stack.

Supports training and inference of neural network
models needed in:

• Pillar I Reduced Order Models: Autoencoders

• Pillar II Earth System Model workflow: Cyclone

tracking

• Pillar III Tsunami workflow and EarthQuake

workflow

Motivations:

• Need of neural network models

16

Summary

• EDDL provides a complete software stack to run sequential and distributed neural

network training processes, as well as inference processes (including FPGAs)

• PyEDDL Python wrapper enable python development abstracting from the

infrastructure complexity

• Integration of EDDL with PyCOMPSs through Computing Service method

• Initial implementation of scientific use cases in the eFlows4HPC project with EDDL

successful

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

www.eFlows4HPC.eu

.

@eFlows4HPC eFlows4HPC Project

Questions

http://www.eflows4hpc.eu/
https://twitter.com/eFlows4HPC
http://www.linkedin.com/company/eflows4hpc

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

Donatello Elia
Euro-mediterranean Center on Climate Change (CMCC)

Part 2: Ophidia for HPDA in Project Pillars

19

Ophidia HPDA Framework
Ophidia (http://ophidia.cmcc.it) is a CMCC Foundation research project addressing data challenges
for eScience with a focus on the climate domain

• A HPDA framework for multi-dimensional scientific data joining HPC paradigms with scientific

data analytics approaches

• In-memory and server-side data analysis exploiting parallel computing techniques

• Multi-dimensional, array-based, storage model and partitioning schema for scientific data

leveraging the datacube abstraction

• End-to-end mechanisms to support interactive analysis, complex experiments and large

workflows on scientific data

20

A paradigm shift: from Desktop to Server analysis

Volume, variety, velocity are key challenges for big data in general and for climate sciences in

particular. Client-side, sequential and disk-based workflows are three limiting factors for the current

scientific data analysis tools.

S. Fiore, A. D’Anca, C. Palazzo, I. Foster, D. N. Williams, G. Aloisio, “Ophidia: toward bigdata analytics for eScience”, ICCS2013 Conference, Procedia Elsevier, 2013

21

Use cases/applications supported by Ophidia

� Time series analysis

� Data subsetting

� Model intercomparison

� Multi-model means

� Massive data reduction

� Data transformation

� Parameter sweep experiments

� Ensemble analysis

� Data analytics workflows

� Maps generation

� Data provenance

22

Ophidia Operators

About 50 operators for data (cube) and metadata processing

Ophidia operators documentation: http://ophidia.cmcc.it/documentation/users/operators/index.html

CLASS PROCESSING TYPE OPERATOR(S)

I/O Parallel OPH_IMPORTNC, OPH_EXPORTNC, OPH_CONCATNC,
OPH_RANDUCUBE

Time series processing Parallel OPH_APPLY

Datacube reduction Parallel OPH_REDUCE, OPH_REDUCE2, OPH_AGGREGATE

Datacube subsetting Parallel OPH_SUBSET

Datacube combination Parallel OPH_INTERCUBE, OPH_MERGECUBES

Datacube structure manipulation Parallel OPH_SPLIT, OPH_MERGE, OPH_ROLLUP, OPH_DRILLDOWN,
OPH_PERMUTE

Datacube/file system
management

Sequential OPH_DELETE, OPH_FOLDER, OPH_FS

Metadata management Sequential OPH_METADATA, OPH_CUBEIO, OPH_CUBESCHEMA

Datacube exploration Sequential OPH_EXPLORECUBE, OPH_EXPLORENC

http://ophidia.cmcc.it/documentation/users/operators/index.html

23

Server-side paradigm and execution modes

Oph_Term: a terminal-like commands

interpreter serving as a client for the

Ophidia framework

PyOphidia: a Python interface for

datacube management & analytics with

Ophidia

Multiple execution modes:

● Interactive analysis (e.g.

notebooks)

● Python applications

● Workflows of operators

● Async/sync execution

24

PyOphidia: programmatic support for data science
PyOphidia is a Python module to interact with the Ophidia framework

High-level and easy-to-use bindings for the HPDA framework:

● APIs to manage deployment, data distribution and computation parallelism

● Management of (remote) data objects in the form of datacubes

● Easy exploitation from Jupyter

● Integration with other Python modules (i.e, maps)

● Conversion methods to Xarray and Pandas

25

Support for different deployments

Ophidia architecture allows for flexible deployment targeting different scenarios:

● Distributed and scalable processing on top of HPC and Cloud infrastructures

● All-in-one local setup for training, testing and small-scale parallel analysis

Multi-node setup Single node setup

26

Ophidia in eFlows4HPC

Ophidia is one of the data analytics frameworks in the
eFlows4HPC Software stack.

Supports pre-processing and computation of
climate/environmental indices on simulation data for
two project applications:

• Pillar II Earth System Model workflow: extreme

event indicators (e.g., Heat Waves Number)

• Pillar III Tsunami workflow: tsunami metrics (e.g.,

max, min, peak-to-trough)

Motivations:

• Availability of parallel operators

• Native support for I/O on NetCDF data

• In-memory data management

27

Pillar II: extreme events indicators workflow

28

Pillar II: extreme events indicators

Computation of extreme events indicators on each year produced

by the model (Heat Waves Number, Cold Waves Frequency, etc.)

Extensions to Ophidia in eFlows4HPC to:

● speed-up import of multiple files into a single datacube

● In-memory function for climatological mean computation

Baseline computation:

Indicators computation:

PyCOMPSs is used to perform the Ophidia pipelines
concurrently on different input files and
orchestrate the execution of the various operators.

Output

29

Pillar II: extreme events indicators

Computation of extreme events indicators on each year produced

by the model (Heat Waves Number, Cold Waves Frequency, etc.)

Extensions to Ophidia in eFlows4HPC to:

● speed-up import of multiple files into a single datacube

● In-memory function for climatological mean computation

Baseline computation:

Indicators computation:

PyCOMPSs is used to perform the Ophidia pipelines
concurrently on different input files and
orchestrate the execution of the various operators.

Output

30

Pillar III: operations on tsunami data workflow

31

Pillar III: indicators computation
Computes for each of the time series from the tsunami

simulations (wave amplitude variable): max, min,

peak-to-trough, green's amplification, etc.

Extensions to Ophidia in eFlows4HPC to:

● Better support I/O and management of non-spatial

oriented data

Indicators computation:

32

Summary

● Ophidia provides a complete software stack to run parallel, server-side in-memory analysis

● PyOphidia Python module represents a high-level interface to Ophidia abstracting from the

infrastructure complexity

● Integration of Ophidia with PyCOMPSs through PyOphidia to support two eFlows4HPC pillar

applications

● Initial implementation of scientific use cases in the eFlows4HPC project with

PyOphidia/PyCOMPSs successful

● Full integration of Ophidia in the project software stack in progress

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

www.eFlows4HPC.eu

.

@eFlows4HPC eFlows4HPC Project

Questions

http://www.eflows4hpc.eu/
https://twitter.com/eFlows4HPC
http://www.linkedin.com/company/eflows4hpc

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

Alex Barcelo

Part 3: dataClay, locality
and enhanced iteration

35

in a nutshell

36

BSC’s HPC software stack

37

Active Methods - Developer POV

38

Active Methods - Performance POV

39

Locality -- is it always the solution?

It depends

• When tasks are memory intensive, it yields benefits
• When tasks are heavily compute bound, it doesn’t matter

Or, said differently:
• If transfers and deserialization are your bottleneck,

then add locality!
• If >90% of your time is pure computation,

focus on the algorithm or hardware

40

Enhanced iteration
with dataClay:

split

41

Fundamentals (I)

42

Fundamentals (II)

43

split usage

44

Advantages

45

Results (I)

46

Results (II)

47

Results (III) - Sensitivity to fragmentation

48

Algorithmic improvements: kNN Use Case (I)

k-Nearest Neighbors algorithm starts with a fit procedure that builds tree data structures:

The size of the trees depends on the size of the block (granularity)

49

Algorithmic improvements: kNN Use Case (II)

By using the split, the tree data structures can be built bigger:

The split preserves locality, each tree is built from blocks within the same node.

Having bigger trees results in algorithmic improvements.

50

kNN Results

51

Conclusions

• When in doubt, use split
• If your dataset is fragmented, you will get benefits

• Even for compute bound applications!
• If size of blocks is optimal, you pay overhead with no benefits

• If you KNOW your optimal block size, set it and avoid the split
However, that may prove difficult or unfeasible

• Your intermediate data structures may benefit from the split
• Algorithmic knowledge is required
• Benefits can be substantial, O(log(n)) vs O(n)

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

www.eFlows4HPC.eu

.

@eFlows4HPC eFlows4HPC Project

Thank you

http://www.eflows4hpc.eu/
https://twitter.com/eFlows4HPC
http://www.linkedin.com/company/eflows4hpc

