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Outline

• Session 2: Other Software Components (15 min each +5 
mins questions)

• EDDL for ML in Project Pillars 
• Ophidia for HPDA in Project Pillars    
• dataClay split
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Part 1: EDDL for ML in Project Pillars
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What is EDDL
• EDDL: European Distributed Deep Learning Library
• Open Source library (available on GitHub)
• Enables definition, training and inference of neural network 

models
• Written in C++
• Multi-device support: CPU, GPU, FPGA
• Tensor operations support
• Distributed training support

• Abstracts away infrastructure complexity
• pyEDDL: python wrapper

• OpenSource (available on GitHub)
• Both developed in the framework of DeepHealth project
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EDDL Components

• Tensors
• N-dimensional memory structures used in a neural network 

model
• Tensors have an associated buffer where data is stored
• Tensors have a shape and are assigned to an specific device 

(CPU, GPU, FPGA)
• Most frequent tensor operations implemented

• Layers
• Layers of the neural network, each type has an associated 

class
• Layers have pointers to tensors to store inputs, outputs, 

weights, bias, additional temporary buffers (gradients, …)
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EDDL Components
• Computing Services

• Target device to run the training/inference process
• Tensors allocated in the target device & accessed from its memory
• Devices: CPU (Eigen), GPU (CUDA, CUDNN), FPGA (OpenCL)
• Extension to COMPSs for distributed training

• Node-level parallelism exploited by EDDL
• Inter-node communication and synchronization exploited by COMPSs

• Neural network specific
• Looses, metrics, regularizers, initializers, optimizers, …

• API
• User level programming interface to abstract away all EDDL library
• Documentation: https://deephealthproject.github.io/eddl/
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EDDL Example (C++)
• MNIST simplistic case (dense layers)
• Steps:

• Download dataset
• Define network
• Build model

• Optimizer
• Losses
• Metrics
• Computing service

• Load dataset into tensors
• Preprocessing
• Fit the model
• Evaluate the model
• Delete memory resources
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Coarse and Fine-grained Training

Coarse training simplifies the task and runs for a number of epochs using the train dataset

Fine-grained training enables sophisticated training process, with a rich set of
alternative methods
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Computing Service

Computing can be moved to any 
set of devices by using the 
computing service method.

Functions exist to move 
computing between devices.
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• Trasparent distributed training process
• MPI and NCCL
• Intranode and internode
• Different synchronization policies

• Fully synchronous
• Synchronization every x batches
• Dynamic (bounded communication 

overhead)

• Almost linear scalability shown on 
Power9 cluster

Distributed Training (MPI/NCCL)
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Data parallelism (Model replicated on devices and dataset fits on every node disk)
Every node runs a batch: Global_batch_size = 𝞢 local_batch_sizei
Every x batches the models are synchronized (if x=1 mathematically equivalent)
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Distributed Training (native MPI support)
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EDDL Compatibility (via ONNX)

• Models can be saved and loaded in ONNX format
• Enables compatibility with other tools

• A binary format (EDDL proprietary) exists
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EDDL in eFlows4HPC

EDDL is one of the ML tools in the eFlows4HPC 
Software stack.

Supports training and inference of neural network 
models needed in:

• Pillar I Reduced Order Models: Autoencoders

• Pillar II Earth System Model workflow: Cyclone 

tracking

• Pillar III Tsunami workflow and EarthQuake 

workflow

Motivations:

• Need of neural network models
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Summary

• EDDL provides a complete software stack to run sequential and distributed neural 

network training processes, as well as inference processes (including FPGAs)

• PyEDDL Python wrapper enable python development abstracting from the 

infrastructure complexity

• Integration of EDDL with PyCOMPSs through Computing Service method

• Initial implementation of scientific use cases in the eFlows4HPC project with EDDL 

successful 
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Part 2: Ophidia for HPDA in Project Pillars
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Ophidia HPDA Framework
Ophidia (http://ophidia.cmcc.it) is a CMCC Foundation research project addressing data challenges 
for eScience with a focus on the climate domain

• A HPDA framework for multi-dimensional scientific data joining HPC paradigms with scientific 

data analytics approaches

• In-memory and server-side data analysis exploiting parallel computing techniques

• Multi-dimensional, array-based, storage model and partitioning schema for scientific data 

leveraging the datacube abstraction

• End-to-end mechanisms to support interactive analysis, complex experiments and large 

workflows on scientific data
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A paradigm shift: from Desktop to Server analysis

Volume, variety, velocity are key challenges for big data in general and for climate sciences in 

particular. Client-side, sequential and disk-based workflows are three limiting factors for the current 

scientific data analysis tools. 

S. Fiore, A. D’Anca, C. Palazzo, I. Foster, D. N. Williams, G. Aloisio, “Ophidia: toward bigdata analytics for eScience”, ICCS2013 Conference, Procedia Elsevier, 2013
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Use cases/applications supported by Ophidia

� Time series analysis

� Data subsetting

� Model intercomparison

� Multi-model means

� Massive data reduction

� Data transformation

� Parameter sweep experiments

� Ensemble analysis

� Data analytics workflows

� Maps generation

� Data provenance
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Ophidia Operators

About 50 operators for data (cube) and metadata processing

Ophidia operators documentation: http://ophidia.cmcc.it/documentation/users/operators/index.html 

CLASS PROCESSING TYPE OPERATOR(S) 

I/O Parallel OPH_IMPORTNC, OPH_EXPORTNC, OPH_CONCATNC, 
OPH_RANDUCUBE

Time series processing Parallel OPH_APPLY

Datacube reduction Parallel OPH_REDUCE, OPH_REDUCE2, OPH_AGGREGATE

Datacube subsetting Parallel OPH_SUBSET

Datacube combination Parallel OPH_INTERCUBE, OPH_MERGECUBES

Datacube structure manipulation Parallel OPH_SPLIT, OPH_MERGE, OPH_ROLLUP, OPH_DRILLDOWN, 
OPH_PERMUTE

Datacube/file system 
management

Sequential OPH_DELETE, OPH_FOLDER, OPH_FS 

Metadata management Sequential OPH_METADATA, OPH_CUBEIO, OPH_CUBESCHEMA

Datacube exploration Sequential OPH_EXPLORECUBE, OPH_EXPLORENC

http://ophidia.cmcc.it/documentation/users/operators/index.html
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Server-side paradigm and execution modes

Oph_Term: a terminal-like commands 

interpreter serving as a client for the 

Ophidia framework

PyOphidia: a Python interface for 

datacube management & analytics with 

Ophidia

Multiple execution modes:

● Interactive analysis (e.g. 

notebooks) 

● Python applications

● Workflows of operators

● Async/sync execution
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PyOphidia: programmatic support for data science
PyOphidia is a Python module to interact with the Ophidia framework

High-level and easy-to-use bindings for the HPDA framework:

● APIs to manage deployment, data distribution and computation parallelism

● Management of (remote) data objects in the form of datacubes

● Easy exploitation from Jupyter 

● Integration with other Python modules (i.e, maps)

● Conversion methods to Xarray and Pandas
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Support for different deployments

Ophidia architecture allows for flexible deployment targeting different scenarios:

● Distributed and scalable processing on top of HPC and Cloud infrastructures

● All-in-one local setup for training, testing and small-scale parallel analysis

Multi-node setup                                                   Single node setup
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Ophidia in eFlows4HPC

Ophidia is one of the data analytics frameworks in the 
eFlows4HPC Software stack.

Supports pre-processing and computation of 
climate/environmental indices on simulation data for 
two project applications:

• Pillar II Earth System Model workflow: extreme 

event indicators (e.g., Heat Waves Number)

• Pillar III Tsunami workflow: tsunami metrics (e.g., 

max, min, peak-to-trough)

Motivations:

• Availability of parallel operators

• Native support for I/O on NetCDF data

• In-memory data management
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Pillar II: extreme events indicators workflow 
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Pillar II: extreme events indicators 

Computation of extreme events indicators on each year produced 

by the model (Heat Waves Number, Cold Waves Frequency, etc.)

Extensions to Ophidia in eFlows4HPC to:

● speed-up import of multiple files into a single datacube

● In-memory function for climatological mean computation

Baseline computation:

Indicators computation:

PyCOMPSs is used to perform the Ophidia pipelines 
concurrently on different input files and 
orchestrate the execution of the various operators.

Output
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Pillar II: extreme events indicators 
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Pillar III: operations on tsunami data workflow 
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Pillar III: indicators computation
Computes for each of the time series from the tsunami 

simulations (wave amplitude variable): max, min, 

peak-to-trough, green's amplification, etc. 

Extensions to Ophidia in eFlows4HPC to:

● Better support I/O and management of non-spatial 

oriented data

Indicators computation:
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Summary

● Ophidia provides a complete software stack to run parallel, server-side in-memory analysis

● PyOphidia Python module represents a high-level interface to Ophidia abstracting from the 

infrastructure complexity

● Integration of Ophidia with PyCOMPSs through PyOphidia to support two eFlows4HPC pillar 

applications

● Initial implementation of scientific use cases in the eFlows4HPC project with 

PyOphidia/PyCOMPSs successful

● Full integration of Ophidia in the project software stack in progress
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Part 3: dataClay, locality 
and enhanced iteration
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in a nutshell
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BSC’s HPC software stack
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Active Methods - Developer POV
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Active Methods - Performance POV
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Locality -- is it always the solution?

It depends

• When tasks are memory intensive, it yields benefits
• When tasks are heavily compute bound, it doesn’t matter

Or, said differently:
• If transfers and deserialization are your bottleneck, 

then add locality!
• If >90% of your time is pure computation, 

focus on the algorithm or hardware
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Enhanced iteration
with dataClay:

split
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Fundamentals (I)
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Fundamentals (II)
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split usage
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Advantages
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Results (I)
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Results (II)
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Results (III) - Sensitivity to fragmentation
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Algorithmic improvements: kNN Use Case (I)

k-Nearest Neighbors algorithm starts with a fit procedure that builds tree data structures:

The size of the trees depends on the size of the block (granularity)
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Algorithmic improvements: kNN Use Case (II)

By using the split, the tree data structures can be built bigger:

The split preserves locality, each tree is built from blocks within the same node.

Having bigger trees results in algorithmic improvements.
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kNN Results
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Conclusions

• When in doubt, use split
• If your dataset is fragmented, you will get benefits

• Even for compute bound applications!
• If size of blocks is optimal, you pay overhead with no benefits

• If you KNOW your optimal block size, set it and avoid the split
However, that may prove difficult or unfeasible

• Your intermediate data structures may benefit from the split
• Algorithmic knowledge is required
• Benefits can be substantial, O(log(n)) vs O(n)
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