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1. Executive Summary 
This document presents the work performed in WP1 regarding requirements gathering, design of 
the eFlows4HPC workflow platform and selection of the metrics to evaluate improvements in the 
Pillars workflows.  

Requirements for the eFlows4HPC platform have been gathered from three sources (Pillars, 
Software components, and HPC sites). From Pillars we have gathered their requirements with 
regard the required functionalities for implementing, deploying and executing and managing the 
data of their different workflows. The process to obtain these requirements has been through a 
template proposed by WP1 asking for relevant information about the Pillars’ workflows. Once the 
templates were filled, several meetings between WP1 and each of the Pillars (WP4, WP5 and WP6) 
were organized to discuss and understand the requirements. From this process, a total of 33 
different requirements from the Pillars. The requirements are summarized in Table 1, Table 2 and 
Table 3, and provide requirements on the characteristics needed in the workflow management 
system, in the data and storage management, in the type of artificial intelligence tools, in the 
software deployment tools, portability, usability, interoperability and accessibility.  

The second source of requirements are the software components which must be deployed in the 
computing infrastructure, either HPC simulators required by the workflow or components of the 
eFlows4HPC software stack such as Machine Learning (ML) or Data Analytics (DA) frameworks, 
runtimes and data management tools. We have studied the deployment and execution processes 
of this software to identify the required functionalities in the different phases of the workflow 
lifecycle. Table 4 summarizes the findings for this second set of requirements, which include 
aspects related to software deployment and access to specific HPC hardware to get the expected 
performance.  

Finally, constraints from HPC data centres must be also considered in order to reduce the barriers 
for adopting the eFlows4HPC methodologies and software stack. Supercomputers are singular 
infrastructures shared by multiple users at the same time. System administrators have to preserve 
the security of the data processed while keeping the performance of the whole system. For this 
reason, supercomputers have several constraints in terms of accessibility and usability which have 
to be taken into consideration when producing software or services using these systems. To gather 
these constraints, we have conducted a survey with different HPC centres involved in the project. 
Table 5 summarizes the constraints posed by the HPC centres which mainly relate to the 
deployment of services that persist between executions or require external connectivity, the 
access protocol for login and data transfer, software management packages, file system and job 
scheduler. From the conclusions of the analysis of these surveys, a set of requirements were 
derived (see Table 6).   

In total, a list of 38 requirements were derived. From this list of requirements, we have identified 
the components that can provide the required functionality (Table 7).  

Another set of activities of the WP1 in this initial phase was devoted to the design of the 
eFlows4HPC architecture. This document also presents the details of the first version of this 
architecture including the description of the components organized in functional groups 
(Workflow Accessibility/Reusability, Workflow Development, Workflow Deployment and 
Execution and Data management), the main usage cases and the component interactions derived 
from these cases. WP1 partners were organized in working groups to analyze and compare the 
different components that have similar or related characteristics. The overlaps, differences and 
possible interactions were discussed. 
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The difference phases in the lifetime of an eFlows4HPC workflow were designed: development, 
deployment and execution, defining what we have called HPC Workflows as a Service (HPCWaaS). 
In the first phase, the workflow developer with use the extended TOSCA, PyCOMPSs and Data 
logistics Pipelines to design the workflow. The workflow will be based on different types of 
components: HPC solvers or simulators, ML and DA tools, as well as data sources. These elements 
will be available in the Data Catalog, the Model Repository and the Software Catalog.  Once 
available, the workflow will be published as a service in the Workflow Registry. Users will be able 
to select the workflow and request its deployment. For the deployment, the Ystia Orchestrator 
and the Data Logistics Service will collaborate to deploy the different workflow components in the 
HPC centres and in the auxiliary cloud (used for the services that cannot be executed in HPC due 
to its constraints). Finally, the workflow will be executed, orchestrated mainly by the PyCOMPSs 
runtime, in cooperation with the Ystia orchestrator. The workflows will be very dynamic, not only 
because the required executions (task graph) is generated at run but also because the PyCOMPSs 
runtime is able to react to failures and exceptions, enabling to define a very dynamic and 
adaptative behaviour. To exploit new architectures such as accelerators or the EPI, specific 
optimized kernels will be integrated in the workflow executions. The envisaged environment also 
integrates solutions for persistent storage (dataClay and Hecuba) that will enable to exploit new 
storage paradigms, and optimized kernels. 

The last part of this deliverable provides the definition of a set of selected common metrics 
according to the aspects related to the project technical objectives. These metrics will be used in 
different phases of the project to evaluate the improvements introduced by eFlows4HPC 
technologies in the pillars’ workflows. 

 

2. Introduction 
Traditionally, High-Performance Computing (HPC) has been used to provide computational 
resources, software environments and programming models to enable the execution of large-scale 
e-science applications with the objective of generating predictions of real processes (weather 
forecasting, wave propagation, protein interaction ...). Recently, with the introduction of Big Data 
and Artificial Intelligence (AI) technologies, these applications have evolved to more complex 
workflows where traditional HPC simulations are combined with data analytic (DA) and machine 
learning (ML) algorithms. However, the combination of these different technologies in a single 
workflow require to dedicate a lot of effort to manage the integration of different frameworks in 
different phases of the workflow lifecycle. Starting from the development phase, where the 
integration of different workflow HPC, DA and ML parts requires additional programming efforts, 
passing through the deployment phase, where different tools and frameworks must be deployed 
in the infrastructure, and the execution phase, where the execution of all the different 
components must be orchestrated in a dynamic and intelligent way.  

The eFlows4HPC project aims at delivering a workflow platform that consists of the software stack 
and an additional set of methodologies that will enable the integration of HPC simulation and 
modelling with big data analytics and machine learning in scientific and industrial applications. 
From one side, the eFlows4HPC software stack aims at providing the required functionalities to 
manage the lifecycle of such complex workflows; form the other side, it introduces the HPC 
Workflow as a Service (HPCWaaS) concept. It will apply the Function as a Service (FaaS) concept to 
the HPC environments which will hide all the complexity of a HPC Workflow deployment and 
execution to end users. These project outcomes demonstrate, through three application Pillars 



 

 6 

D1.1 Requiements , Metrics and Architecture Design 
Version 1.0 

with high industrial and social relevance (manufacturing, climate and urgent computing for natural 
hazards), how the realization of forthcoming efficient HPC and data-centric applications can be 
developed with the proposed novel workflow technologies. 

This document reports the work performed in requirements gathering and the eFlows4HPC 
architecture definition. It is organized as follows. Section 3 reports the process of gathering the 
requirements from the different eFlows4HPC stakeholders (Pillars, Software components, and HPC 
sites). Then, the software stack architecture, the main usage cases of the HPCWaaS methodology, 
and the relation of the requirements with the software stack components is presented in Section 
4. Finally, Section 5 describes the metrics selected to evaluate the implemented workflows 
according to the main technological areas related to the project objectives. 

 

3. Requirements & Constraints 
The requirements gathering process for the eFlows4HPC platform has been split in three main 
parts. The main source of requirements are the project Pillars. These pillars are the uses cases 
representing the user communities (manufacturing, climate and urgent computing) which will 
benefit from the complex workflows targeted by the eFlows4HPC project. They will drive and 
validate the implementation of eFlows4HPC platform providing the required functionalities for 
implementing, deploying and executing and managing the data of their different workflows.  

The second source of requirements are the software components which must be deployed in the 
computing infrastructure, either HPC simulators required by the workflow or components of the 
eFlows4HPC software stack such as ML or DA frameworks, runtimes and data management tools.  

Finally, constraints from HPC data centres must be also considered in order to reduce the barriers 
for adopting the eFlows4HPC methodologies and software stack. 

 

3.1. Requirements from Pillars 
Collecting the requirements from the pillars has been performed in collaboration between WP1 
and WP4, 5 and 6 which correspond to the different Pillars of the project. This process is usually 
complex due to the differences in the terminology used in the Pillars domain and the one used by 
software developers and architects. To coordinate this process WP1 proposed a template 
(Appendix A) pointing out the relevant information to extract from the Pillars’ workflows. This 
information was trying to identify what are the requirements for the eFlows4HPC platform in the 
different phases of the workflow lifecycle. These templates have been filled by the teams working 
on the different workflows defined by the pillars, and their results have been analyzed by the Pillars 
teams together with the WP1 team. The results of this analysis are reported in deliverables D4.1, 
D5.1 and D6.1, and the following tables are the summary of the requirements from the different 
pillars. These tables contain an identifier (ID) to easily identify the source of the requirement (P1: 
Pillar 1, P2: Pillar 2, and P3: Pillar 3), the name, description and priority assigned by pillar teams. 
More details about these requirements can be found in the mentioned deliverables. 
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Table 1. Summary of requirements from Pillar I: Digital twin in Manufacturing. 

ID Name Description Priority 

P1-1 Distributed SVD 
Requires an optimized distributed execution of the Singular Value 
Decomposition (SVD) algorithm to analyze large scale matrices which can 
exceed the memory of different computing nodes of a cluster.    

Must 

 

P1-2 
Storing of hyper-
reduced model 

Requires storing and transferring the meshes and the trained ML model 
needed to reconstruct the hyper-reduced model, together with the 
solver executable needed to run it. 

Must 

 

P1-3 ANN model 

Require Artificial Neural Networks (ANN) (probably convolutional) to 
train autoencoders. This may provide an attractive option to improve the 
reduction ratio of the reduced model. Here both training data and the 
output to be used in the inference step need to be saved. 

May 

 

P1-4 Clustering model 
Clustering algorithms as an option to improve the reduction ratio. Here 
both training data and the output to be used in the inference step need 
to be saved. 

Should 

 

P1-5 Persistent storage Requires persistent storage for data to be consumed between the steps May 

P1-6 Restart 
Workflow programming and management have to allow re-start the 
Reduced-Order-Model (ROM) computation according to validation 
results. 

Should 

 

P1-7 
Workflow 
orchestration 

Workflow management is also required through the phases to 
coordinate the execution of the different computing steps. 

Must 

P1-8 ML inference Simulation code requires access to the ML trained model. May 

P1-9 
Hyper Reduced Model 
Deployment 

Once the hyper reduced model is computed it may be deployed in a 
computing infrastructure,(such as a Cloud) to be accessible and reusable 
by final users.  This requires to deployment the model together with   
software and data needed to run a complete hyper-reduced model from 
scratch. 

May 

 

Table 2. Summary of requirements from Pillar II: Dynamic and adaptive workflows for climate modelling. 

ID Name Description Priority 

P2-1 Execution robustness 
Management of fault tolerance during the workflow execution including 
checkpoints or retries. For example, during a large execution if a node 
fails, the workflow must be able to recover and continue to the end. 

Should 

P2-2         Portability  
Workflow components should be portable to various types of HPC 
infrastructures. 

Should 

P2-3 
Integrated workflow 
management 

Requires the management of task dependencies, execution of parallel 
simulations on different HPC infrastructures, management of batch jobs 
(submission, monitoring, cancellation), management of conditional paths 
in a transparent way. 

Must 

P2-4 

Integration with long-
term 
archive/repository 
storage  

Results may be stored in long-term storage for archiving purposes, second 
use (e.g., downstream services) and/or to satisfy FAIRness policies.) 

May 

P2-5 Workflow adaptability 
Capability to easily manage, cancel, replace and add components 
invocations in the workflow, for instance allowing the execution starting 
from the n-th step. 

Should 

P2-6 
Access to intermediate 
in-memory results 

The workflow should be able to retrieve data/intermediate outputs of the 
running processes directly from memory. 

Must 
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P2-7 
AI integration for 
ensemble member 
pruning 

Support for applying Machine Learning techniques on intermediate data 
of running members to compute the members that will be discarded at a 
given step of the simulation.  

 

Should 

P2-8 ML/DL capabilities 
Requires the support for training and inference of Neural Network models 
for example for Tropical Cyclone detection. 

Must 

P2-9 DA capabilities 
Support for descriptive analytics (e.g., statistical analysis) exploiting fast 
in-memory analysis. 

Must 

P2-10 
High Performance 
Computing support 

Climate models have to be executed on computing infrastructures 
capable of providing a large amount of processing and memory resources. 

Must 

P2-11 Multi-member analysis 
Support for concurrent execution of sub-workflows starting from different 
inputs (configurable) and comparison of the sub-workflows results. 

Must 

 
Table 3.Summary of requirements from Pillar III: Urgent Computing for natural hazards 

ID Name Description Priority 

P3-1 
Urgent computing 
access 

Priority access to HPC computational resources. Must 

P3-2 Data accessibility 

Some data required in HPC computations is stored in external repositories 
and some computational results must be required for post processing in 
external services. So, some High-performance data management 
mechanism  between external repositories and HPC facilities is required 
in order make data accessible in the infrastructure required by the 
computation 

Should 

P3-3 Data replication  

Redundancy of data is required in different phases of the workflow 
execution. Source data must be replicated in different location to assure a 
high-availability computation as well as avoiding time consuming data 
transfers (e.g. computational meshes). Intermediate data generated by 
large computation must be also considered in order to avoid losing data in 
case of failures. 

Must 

P3-4 Execution robustness 

Support for the management of fault tolerance during the workflow 
execution including checkpoints or retries. For example, during a large 
execution if a node fails, the workflow must be able to recover and 
continue to the end. 

Must 

P3-5 
Infrastructure 
interoperability  

Interoperability between computations performed in different 
infrastructures used in the Pillar (e.g., HPC clusters and external servers). 

Must 

P3-6 
Portability and 
Reusability 

Workflow and its components must be portable and reusable to several 
infrastructures and users. 

May 

P3-7 Streaming data source 
Management of streaming data sources in real-time from external 
agencies or servers 

Must 

P3-8 
Integrated workflow 
manager 

Support for the management of task dependencies, execution of parallel 
simulations on different HPC infrastructures, management of batch jobs 
(submission, monitoring), management of conditional paths, and 
coordination of microservices invocations  

Must 

P3-9 
Integration with 
permanent storage  

Support for access to external data repositories (R/W) such as EUDAT 
Data Storage services (e.g. B2DROP). Support for final storage in long-
term storage for second use and/or to satisfy FAIRness policies. 

Must 

P3-10 
Inference with 
online/offline ML 
models 

Support to the use of inference from 
Online and/or offline trained ML models by Earthquake and Tsunamis 
emulators as steps in its workflows. 

Must 

P3-11 DA integration   Predictive and prescriptive data analytics to assist some building blocks in 
analysis and decision tasks. 

May 

P3-12 Workflow malleability Capability to cancel and add new components invocations at run-time. Should 
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Note that some requirements from different pillars have defined similar functionalities such as P2-
1 and P3-4 regarding execution robustness; P2-2 and P3-6 about components portability and 
reusability; P1-7, P2-3 and P3-8 about workflow management and orchestration; and P2-4 and P3-
9 regarding integration with permanent storage. From now on, these similar requirements will be 
considered a single requirement in order to avoid effort duplication.  

 

3.2. Requirements and Constraints from Components 
Another important goal of the project is enabling the portability and reusability of complex 
workflows simplifying its deployment and execution. For this reason, the eFlows4HPC software 
stack must support the deployment and coordinate the execution of the software components 
required by required by the Pillars’ workflows (mainly HPC software and DA/ML frameworks) as 
well as the eFlows4HPC software stack components which must also be deployed in the computing 
infrastructure to manage the workflow execution and data.  

We have studied the deployment and execution processes of this software to identify the 
functionalities that the eFlows4HPC platform should support to achieve the mentioned goal. The 
following table provides a summary of these functionalities. The first part of the table focuses on 
the software deployment aspects. It includes the support for the different deployment models 
required by the used software as well as the access to the specific HPC hardware to ensure the 
execution will get a similar performance as if it was manually deployed by the user. 

 
Table 4. Requirements from software components 

ID Name             Description Priority 

CMP-1 
Access to HPC 
specific devices 

Workflows developed with eFlows4HPC stack must be able to access the 
specific HPC hardware such as High-Performance networks, accelerators or 
special CPU vector instructions. 

Must 

CMP-2 
Support optimized 
kernels 

Workflows developed with eFlows4HPC stack must be able to support the 
architecture-optimized kernels and libraries. 

Must 

CMP-3 
Service 
deployments 

The eFlows4HPC software stack should support the deployment of data bases 
and services required by the DA and ML frameworks in auxiliary Cloud and HPC 
centers. 

Must 

CMP-4 Service invocation 
Workflows developed with eFlows4HPC stack must support the invocation of 
services. 

Must 

CMP-5 
Multi-node 
execution support 

Workflows developed with eFlows4HPC stack must support the execution of 
applications distributed in different computing resources (such as MPI 
applications). 

Must 

CMP-6 
Multicore 
execution support 

Workflows developed with eFlows4HPC stack must support the execution of 
applications with multi-threaded/multi-process using several cores. 

Must 

 

3.3. Constraints from HPC Centers  
The last source of requirements is provided by HPC centres. Supercomputers are complex 
infrastructures shared by different users at the same time. System administrators have to preserve 
the security of the data processed while keeping the performance of the whole system. For this 
reason, supercomputers have several constraints in terms of accessibility and usability which have 
to be taken into consideration when producing software or services using these systems. Not 
fulfilling these constraints can prevent the adoption of a certain technology in these computing 
environments. 
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To gather these constraints, we have conducted a survey with different HPC centres. We have 
prepared a questionnaire (available in Appendix B) with questions related to the main objectives 
of the eFlows4HPC platform including access and security aspects, available services, software 
management tools, and execution restrictions. In the first phase of the project, this questionnaire 
has been sent to HPC system administrators which are involved in the project or used by the Pillars 
to get feedback and identify common constraints and produce a first set of requirements for the 
eFlows4HPC architecture. In the second phase, we plan to extend this questionnaire and to include 
other HPC sites in PRACE and EuroHPC. 

 
Table 5. Summary of HPC sites survey 

Site BSC CMCC FZJ PSNC AWI DKRZ 

Access & 
Security 

Access SSH SSH(VPN) SSH SSH/GSISSH SSH SSH 

Identity SSH Keys 
VPN Cert / 
SSH Keys 

SSH Keys 
SSH Keys, 
x509(PRACE) 

SSHkeys SSHkeys 

UNICORE Testing No Yes No No No 

In Conn. SSH Only VPN SSH 
SSH, GSISSH, 
ARC 

Only from 
AWI 

On request 

Out Conn. Not Allowed Allowed No SSH 
ssh, gsissh, 
arc, http, ftp 

Allowed On request 

Cluster Nodes 
Restrictions 

Login Restricted No MPI Restricted Restricted Restricted Restricted 

Service Not Allowed Yes Not Allowed Yes No On request 

Compute No restrictions 
No 
restrictions 

No 
restrictions 

No 
restrictions 

No 
restrictions 

No 
restrictions 

Queue System 
Shared disk 

Queue 
system 

Slurm/LSF LSF Slurm Slurm Slurm Slurm 

Shared disk GPFS GPFS 
GPFS, 
HPST(BB) 

cNFS(Home), 
Lustre 

BeeGFS Lustre 

Software 
Management 

Modules Yes Yes Yes Yes Yes Yes 

Installation 
tools 

Conda (EB and 
Spack testing) 

Conda Easy-build Conda 
Not 
provided 

Conda 
Spack 

Containers Singularity Singularity Singularity Singularity Singularity Singularity 

Data 
Infrastructure 

Data 
Interfaces 

SCP 
GridFTP 

SCP 
FTP, GridFTP 
HTTP, 
openDAP 

SCP 
SFTP 
UFTP 

SCP SCP 
SCP 
GridFTP 
Swift/S3 

Storage 
Levels 

(NVMe), SSD, 
GPFS 
HSM:GPFS/Tape 

GPFS 
Archive 

HPST 
GPFS 
HSM 

cNFS 
Lustre (no 
specific clean 
up after job) 

/dev/shm, 
SSD 
BeeGFS, 
Tape 

Lustre (HDD, 
NVMe) 
HSM 

 

Table 5 provides a summary of the results obtained in this survey, where we can see that in some 
aspects, the answers are quite dispersed but in others we can see commonalities. The main 
findings of the survey are:  

- We cannot rely on services which must persist between executions or require external 
connectivity.  Most clusters either do not provide nodes suitable to install them in a user 
level or it could have connectivity or execution restrictions.  

- SSH and SCP is the common remote shell and transfer protocol supported by all the systems 
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- For software management, all systems use Modules for managing the environment of the 
installed software, and for containers, Singularity is supported by all the systems.  

- All systems have a shared file system, however other types of storage and its usage varies 
depending on the site.   

- Slurm is the most extended queue system but not the only one. Implementing tools 
supporting this system will cover a considerable number of sites. However, the queue 
system is the key component in an HPC site, so they are going to adopt the eFlows4HPC 
stack if it is not supported it cannot be extended to support it.  

 
Table 6. Requirements from HPC sites 

ID Name Description Priority 

HPC-1 
HPC cluster access 
support 

The interactions between eFlows4HPC software stack and the HPC systems 
must at least support the SSH protocol 

Must 

HPC-2 
HPC data transfers 
support 

Transfers to/from HPC clusters must support at least the SCP protocol Must 

HPC-3 
Singularity container 
support 

The usage of containers in the HPC system must be compatible with 
singularity containers 

Must 

HPC-4 
Infrastructure service 
deployment 

The eFlows4HPC software stack cannot rely only on services which require to 
be installed with privileged nodes or users in the supercomputing clusters.   

Must 

HPC-5 Queue system 
Supported queue systems must include at least Slurm and must provide 
extension mechanisms to provide other queue systems. 

Must 

 

4. Architecture  
This section provides the details of the designed architecture for achieving the eFlows4HPC project 
objectives and the requirements presented in the previous section.  It is organized as follows, first 
an overview of the architecture is presented followed by a description of the main functionalities 
of the architecture components. 

4.1. Overview 
The eFlows4HPC software stack will be composed of a set of software components, organized in 
different functional groups (Figure 1). The first group provides the syntax and programming models 
to implement these complex workflows combining typical HPC simulations with HPDA and ML. A 
workflow implementation consists of three main parts: a description about how the software 
components are deployed in the infrastructure (provided by an extended         TOSCA [1] 
definition); the functional programming of the parallel workflow (provided by the PyCOMPSs 
Programming Model [2]); and data logistics pipelines to describe data movement to ensure the 
workflow data are available in the computing infrastructure when required. 

The second group consists of a set of services, repositories, catalogues, and registries to facilitate 
the accessibility and re-usability of the implemented workflows (Workflow Registry), their core 
software components such as HPC libraries and DA/ML frameworks (Software Catalog) and its data 
sources and results such as ML models (Data Registry and Model repository). 

Finally, the lowest groups provide the functionalities to deploy and execute the workflow based 
on the provided workflow description. From one side, this layer provides the components to 
orchestrate the deployment and coordinated execution of the workflow components in federated 
computing infrastructures. On the data management side, it provides a set of components to 
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manage and simplify the integration of large volumes of data from different sources and locations 
with the workflow execution. 

 
Figure 1. eFlows4HPC Software Stack Overview. 

4.2. Component Descriptions 
Next paragraphs provide the details of the functional groups of the eFlows4HPC software stack 
and the description of the components in each group 

4.2.1. Workflow Definition 

 
Figure 2. Workflow Definition Overview. 

As introduced before, the second group is in charge of providing the syntax and programming 
models to implement complex workflows combining typical HPC simulations with HPDA and ML 
phases. The workflow definition consists of three parts. At a higher level, an extended version of 
the TOSCA standard is used to describe the high level execution lifecycle of the workflow. At a 
lower level, the PyCOMPSs programming model that provides a lower level task-based 
parallelization, which is used to orchestrate the invocations of the different workflow 
computations which can include just a simple task execution or sub-workflows implemented with 
different HPC libraries or DA/ML frameworks. Finally, the Data Logistics pipelines define the 
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required data operations to properly execute the workflow. Next paragraphs provide more details 
about these models. 

4.2.1.1. Extended TOSCA 

The higher-level part of eFlows4HPC workflow description will be defined using the TOSCA 
standard [1]. A workflow in the eFlows4HPC platform will correspond to a TOSCA application, 
designed as an assembly of components, that may be interconnected and that defines standard 
operations to manage their execution lifecycle. TOSCA defines two types of workflows. 

● Declarative workflows: they are workflows to install, start, stop, uninstall (and run for jobs) 
based on the component’s standard operations and the relationships between these 
components.  

● Imperative workflows: they user-defined workflows that can override declarative 
workflows 

TOSCA extensions and imperative workflows will be leveraged, to address specific kinds of services 
to deploy, such as HPC jobs, or to implement specific aspects addressed in the project like dynamic 
workflows or data awareness.  To support dynamicity in this part of the eFlows4HPC workflow, 
users can define variables in the TOSCA descriptions whose value can be updated by workflow’s 
steps allowing the possibility to modify other workflow steps. TOSCA descriptions can also support 
Inputs/Outputs, span hybrid/heterogeneous infrastructures and rules based scheduling (Drools-
Like / Cron-Like). 

Developers can define the high-level workflows with TOSCA either in plain-YAML or graphically 
designed using the Alien4Cloud1 web user interface (UI). 

4.2.1.2. PyCOMPSs Programming Model 

PyCOMPSs [2] is the Python binding of the COMPSs framework [3] that facilitates the development 
of parallel computational workflows for distributed infrastructures. It offers a programming model 
based on sequential development - the application is a plain sequential Python script - where the 
user annotates the functions to be run as asynchronous parallel tasks with Python decorators. This 
decorator also contains a description of the function parameters, such as type and direction, etc. 
which is vital for building the dependency graph where tasks are represented as nodes and data 
dependencies between tasks as edges. 

At execution time, tasks are created for each decorated function invoked from the code and 
forwarded to the COMPSs Runtime which handles data dependency analysis, task scheduling and 
data transfers. The task creation is performed in an asynchronous way, and once the runtime has 
added a given task to the dependency graph, the execution of the main Python code continues, 
possibly generating new tasks. With this aim, PyCOMPSs manages future objects: a representative 
object is immediately returned to the main program when a task is invoked. A future object 
returned by a task can be involved in subsequent asynchronous task calls and PyCOMPSs will 
automatically find the corresponding data dependencies without requiring to wait for the actual 
result of the task. 

PyCOMPSs can be extended to support different tasks and data types. For instance, it is able to 
support multi-node and multi-core tasks, which are used to integrate MPI and OpenMP 

                                                      
1 http://alien4cloud.github.io/  

http://alien4cloud.github.io/
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applications as tasks of a workflow just adding a specific @mpi decorator in a function which 
represents the execution of an MPI application [4]. Following the same approach, it can be used 
to integrate the execution of binaries (@binary) or containerized applications (@container). Users 
can also use the @constraint decorator to define resource requirements for a task such as number 
of CPUs, GPUs or memory size. 

Regarding data types, PyCOMPSs not only supports standard parameters (primitive types, files, 
objects and collections or dictionaries of the mentioned types), it also supports the definition of 
streams to exchange data between tasks. It allows users to create hybrid workflows combining 
data and task flows in the same application [5]. 

Another important feature of PyCOMPSs is the workflow dynamicity. PyCOMPSs workflows are 
created at execution time from a Python code, so it is very easy to program different workflow 
branches from previously generated values. However, dynamicity can be also generated by failures 
or exceptions. Scientific workflows usually implement hyper-parameter searches in huge spaces 
performing loads of simulations with different input parameters. It is very likely that some of these 
simulations fail, but they should not imply a failure in the whole workflow. For those simulation 
tasks, developers can provide hints to ignore these failures, or to cancel their successors. It is also 
possible that a solution is found before finishing all the execution. For this purpose, PyCOMPSs 
supports parallel try-except blocks where if a specific exception is raised in one of the tasks of the 
block all the remaining tasks will be cancelled [6]. 

4.2.1.3. Data Logistics Pipelines 

Workflows for Data Logistics Service are created in Python as Directed Acyclic Graphs (DAGs) and 
called Pipelines. They have some similarities with ETL (Extract, Transform, Load) approaches. 
Pipelines include additional metadata describing execution details: frequency, retries, parallelism, 
backfill, etc. 

The idea is to build the workflows as pure functions, no orthogonal concerns should be included 
(invocation/scheduling/input-output locations). Such an approach makes testing of the pipelines 
easier. Furthermore, such functions achieve idempotence. In case we have to rerun the pipeline, 
the results should be the same, e.g., a measurement series is recreated rather than new 
measurements are added. This results in a powerful ability to recreate the data sets in a 
reproducible way. If some tasks fail, they can be restarted. In the worst case, the work will be done 
twice but the data will not be duplicated. 

DAGs are composed of operators and sensors. Sensors are able to detect new data in the sources 
whilst the operators are responsible to conduct processing, transformations, and transfers. There 
are a number of operators already available in the Data Logistics Service, and the list can be easily 
extended. 
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4.2.2. Workflow Accessibility and Reusability 

 
Figure 3. Workflow Accessibility and Reusability Layer. 

This Workflow Accessibility and reusability group provides the required functionalities to manage 
workflows and their main components in an easily accessible and reusable way. It is composed by 
the HPC Workflow as a Service component which provides the main entrypoint for users to simplify 
the workflow accessibility, and by different catalogs, registries, and repositories to enable the 
reusability of the workflow components. Next paragraphs provide details about the functionality 
provided by these components and their baseline technology.  

4.2.2.1. HPC Workflow as a Service (HPCWaaS) 

The HPC Workflow as a Service provides an API and GUI to manage simple and complex workflows. 
It relies on the underlying components Data Catalog, Workflow Registry, Software Catalog and 
Model Repository (described in the following sections), to support workflow construction to 
respectively: 

● specify access to data within workflows, 
● re-use, customize, store workflows, 
● specify usage of software components within workflows, 
● use existing ML models and store resulting models from workflows. 

Applications to be managed in the project typically make use of HPC simulation, Data Analytics, 
and/or ML. Therefore, corresponding workflows will include any combination of these respective 
kinds of processing, or domains. 

Workflows to be handled may then be categorized as  

 simple workflows of three kinds: 

1. Traditional HPC simulation workflows, composed of intensive computation on high 
volumes of simulation data, represented by the “FastHPC” module in the figure. 

2. Data Analytics workflows, involving Data Analytics software usage, typically used for 
data preparation or post simulation processing data analysis, represented by the 
“FastDA” module in the figure. 

3. Machine Learning workflows, designed to manage ML Models training and inference 
(MLOps), handled through the FastML component. 
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 Complex workflows are any combination of these simple workflows. A complex workflow 
typically combines Data Analytics workflows (e.g. for pre and post processing), HPC 
simulation workflows complemented by ML workflows. 

While Complex Workflows, FastHPC and FastDA workflow interfaces will be defined within the 
scope of the project, the FastML product API/GUI will be the baseline for ML workflows. Currently 
FastML will provide the following features (through a Rest API, CLI, and GUI): 

● Model Training Management focused on HPC deployment (including User Management, 
permissions, Cluster Resource Monitoring) 

● Support of TensorFlow, Keras, PyTorch, scikit-learn, although any other ML/DL framework 
can be used as far as its Docker Image is made available 

● Model tuning through Hyper Parameter Optimization features (automated GridSearch and 
RandomSearch for now) 

● Jupyter notebooks integration including  “Fairing”  which is the ability to launch any code 
from a Notebook on an HPC cluster as a job 

The HPCWaaS component will be used as the main entry point for workflow developers and users, 
whose main usages and interactions are described in Section 4.3. 

4.2.2.2. Data Catalog (DC) 

The following describes the architecture of eFLows4HPC Data Catalog. The service will provide 
information about data         sets used in the project. The catalog will store information about their 
locations, schemas, and additional metadata. 

The Data Catalog is implemented with FastAPI2, a modern Python framework allowing for 
flexibility, easy extensibility in the future, and quick deployment. The Data Catalog offers an API 
well-document in the (industry-standard) Swagger3 format as well as a web-based GUI.  

The primary use case for the Data Catalog is to store information about the data sets which can be 
then used by the Data Logistics Service to facilitate the required data movements. Secondly, the 
Catalog will improve the visibility of the data sets used and created in the project, enabling possible 
reuse and collaboration in spirit of FAIR data principles. To this end, the Data Catalog offers a 
possibility to describe the items with a rich set of metadata. 

4.2.2.3. Workflow Registry (WR) 

As introduced in Section 4.2.1, Workflows will be described at the higher level using the TOSCA 
standard [1], they will be managed as TOSCA Topology templates (also named TOSCA Application 
templates), as described in Section 4.2.1.1. Using this paradigm, the lifecycle of an application can 
be described, from resource allocation, to deployment and execution. Workflow designers will use 
this formalism to describe a high-level application workflows which will be linked with the 
PyCOMPSs workflows and data logistic pipelines to define the lower level computational and data 
workflows.  These descriptions will be stored in Workflow Repository, from which descriptions can 
be fetched either to deploy and run the corresponding workflow, or to be customized to address 
a new use case.  

                                                      
2 https://fastapi.tiangolo.com  
3 https://swagger.io  

https://fastapi.tiangolo.com/
https://swagger.io/
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The Ystia suite implements a “TOSCA Application Templates'' repository. Its Github project 
proposes a public instance of such a repository4. It will be more appropriate that an instance 
dedicated to the eFlows4HPC project will be created. The repository management is implemented 
by the Alien4Cloud, component of the Ystia software stack, which provides an API and GUI for this 
purpose. The Ystia orchestrator (Yorc), described in Section 4.2.3.1 will then be able to handle the 
deployment of components and application templates stored in this repository. Alien4Cloud also 
provides a GUI to facilitate the design of TOSCA applications. 

4.2.2.4. Software Catalog (SC) 

The Software Catalog is in charge of storing the software components descriptions that may be 
used within the workflows. It will contain the TOSCA descriptions of the software to be used in 
definition of high-level workflow. The stored software description are TOSCA Components that 
describe the software component lifecycle, i.e., how they should be provisioned, deployed, 
started, stopped, and undeployed on the infrastructures when used in a workflow.  

As described in Section 4.2.2.3, the high-level workflow is itself described within a TOSCA 
Application template, which is built as a composition of the TOSCA Components stored in this 
catalog. 

The Software Catalog will be handled in the same TOSCA repository, implemented by the Ystia 
suite (and materialized as “Ystia Forge” in Figure 3) as the Workflow Registry. The TOSCA 
repository stores both TOSCA Application Templates and TOSCA Components. 

4.2.2.5. Model Repository (MR) 

The Model Repository shall store, ML models as well as information about the ML lifecycle like 
performance metrics and training parameters. Currently MLflow5 is considered the candidate 
technology to offer this functionality.  

The Model Repository offers the possibility to track the lifecycle progress (MLflow Tracking). The 
interaction with this part can be done either directly from the scientific code (in any language), 
using its CLI. The tracking allows users to see and compare the different versions of the models 
and their performance (also using web-based GUI). MLflow Projects allows to package data science 
code and models. This enables sharing of the computation outcomes and reproducibility of the 
experiments. The results of tracking as well as the project itself can be registered to make them 
available to be viewed by other researchers.  

There are currently some first efforts undertaken to integrate the MLflow Tracking into FastML. 
The further plans include creation of a central repository where ready models created in the 
project will be published for the sake of transparency, reusability, and project visibility. Lastly, to 
support everyday scientific work, an on-demand ad-hoc instance of MLflow can be provided. 

 

                                                      
4 https://github.com/ystia/forge 
5 https://mlflow.org  

https://mlflow.org/
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4.2.3. Workflow Deployment and Execution 

 
Figure 4. Workflow Deployment and Execution Layer. 

The workflow deployment and execution functionalities in eFlows4HPC are provided by the Yistia 
Orchestrator, which manages the deployment and execution lifecycle at a higher-level, the 
COMPSs runtime, which provides the lower level execution orchestration, and UNICORE which 
provides services for uniform access to the federated computing infrastructure. 

4.2.3.1. Ystia Orchestrator (Yorc) 

The Ystia orchestrator suite6 will be used for the high-level workflow execution, which consists of 
components provisioning and deployment on the available infrastructures (including resource 
allocation), applications launching and stopping, and the subsequent undeployment. 

Yorc supports application lifecycle management over hybrid infrastructures, it is TOSCA native and 
designed for large scale. It is the core orchestrator engine of the Ystia suite, which also includes a 
“Forge” for hosting TOSCA components and application templates, and relies on a companion 
software, Alien4Cloud, that provides functions to design TOSCA applications and to handle a 
catalog of TOSCA components and applications. Alien4Cloud provides a Web interface (as well as 
an API) to facilitate application design, deployment and supervision, as well as for handling the 
TOSCA catalog. 

Yorc supports the concept of “jobs” (through a TOSCA extension), as well as Container based 
applications. It supports workflows based on TOSCA imperative workflows (as explained in Section 
4.2.1.1).  

4.2.3.2. COMPSs Runtime 

The COMPSs runtime is the component to transparently manage PyCOMPSs tasks. PyCOMPSs 
creates tasks for each decorated function invocation in the user code and forwards them to the 
COMPSs Runtime, which asynchronously handles them. Once a task is submitted to the runtime it 
analyses the data used by the task detecting data dependencies from previous tasks. Based on 
these data dependencies, the available resources and data locations, tasks are scheduled and 
executed in the remote resources which can be located in clusters, grids or clouds (IaaS or CaaS 
offerings). The execution of tasks is performed in a transparent way for the user, requesting the 
required data transfers, spawning the computation according to the task type (binary, MPI, 
containerized ,...) in the allocated resources and synchronizing the tasks results when required. 

                                                      
6 https://ystia.github.io/  

https://ystia.github.io/
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The runtime is also in charge of applying the failure reaction policy defined by the user in an 
autonomous way, cancelling the required tasks (in case of cancel successors or exceptions raised 
in a try-except block) restoring the data coherence (setting default values or removing the 
expected generated data) and continue with the application execution [6]. 

Apart from the mentioned features, the COMPSs runtime can also infer the maximum parallelism 
of an application based on the generated task dependency graph. This information can be used to 
detect when the application can be accelerated with more resources or it is wasting resources. In 
these situations, the COMPSs runtime increases or decreases the resources to make an efficient 
use of resources if the computing infrastructure supports it [7]. 

The COMPSs runtime can be deployed in two modes. It can be deployed as a master-worker 
application, where the master node executes the main code and schedules tasks to the workers 
nodes which are in charge of executing the tasks. The second deployment mode is a multi-agent 
application where each computing node deploys a COMPSs agent which is able to analyze, 
schedule and execute tasks and collaborate with other agents to execute applications. It provides 
a more flexible runtime which is able to better adapt to nested applications and highly distributed 
infrastructures. 

4.2.3.3. UNICORE 

UNICORE (UNiform Interface to COmputing REsources)7 provides tools and services for building 
federated systems, making high-performance computing and data resources accessible in a 
seamless and secure way for a wide variety of applications in intranets and the Internet. 

UNICORE is an infrastructure-level service, which offers RESTful APIs8 for HPC job submission and 
management (on top of a batch scheduler such as Slurm), data access, data movement and 
workflows. It is easily integrated with federated AAI solutions and the HPC site’s user/project 
management. As an infrastructure service, it is deployed and operated by the HPC site. UNICORE 
solves the critical task of user authentication and authorization in a federated environment, and 
allows integration of HPC compute and data into web applications, without any compromise in 
security. 

The UNICORE compute service component offers an abstraction layer over the site’s batch 
resource manager (e.g. Slurm), which can be used to create portable jobs. However, also low-level 
interaction with the resource manager is possible. This component also provides access to the HPC 
site’s file system(s), solving common data management issues such as data transfer and pre/post 
job data staging from/to external data sources. 

The UNICORE workflow engine provides a REST API for submitting and managing workflows that 
can span multiple UNICORE-enabled computational resources. The workflow execution engine and 
workflow description (JSON format) offer a wide range of control constructs and other features: 
while, repeat and for-each loops, if-else blocks and plain groups are supported, which can be 
nested to any depth. Workflow variables can be defined, modified using scripts and used in jobs, 
if-else conditions or for loop control. Workflows can be halted at user-defined points and 
continued later, allowing to integrate user-made decisions and user modifications of workflow 
variables. 

                                                      
7 https://www.unicore.eu  
8 UNICORE REST API documentation: https://sourceforge.net/p/unicore/wiki/REST_API  

https://www.unicore.eu/
https://sourceforge.net/p/unicore/wiki/REST_API
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In summary, UNICORE can help solve integration of HPC into federated applications, allows for the 
creation of cross-site workflows and provides added value such as site-to-site data movement 
(between POSIX filesystems), access to external data or sharing of HPC data sets. 

 

4.2.4. Data Management 

 
Figure 5. Data Management Layer. 

Data management features in eFlows4HPC can be split into two kinds of functionalities. From one 
side, the orchestration of data operations which is supported by the Data Logistics Service; and 
the in-memory/persistent storage management which is managed by Hecuba and dataClay. 

4.2.4.1. Data Logistics Service (DLS) 

Data Logistics Service provides scientific users with a means to prepare, conduct, and monitor data 
movement and transformations. The primary use case is the aggregation of data from distributed 
locations, transformation into the required form, and keeping the local copies up-to-date [8]. 

Data Logistics Service is based on Apache Airflow9. Its main parts are scheduler, metadata store, 
executor, and a set of workers. Airflow executes data transformation pipelines (DAGs) defined by 
users. As already explained in Section 4.2.1.3, these definitions are just a normal Python code, 
lowering the entry barrier. Once a DAG is created it will be passed to execution by the scheduler 
(based on pre-defined requirements like execute once or periodically). Executor dissects the DAG 
into single tasks and passes them over to available workers. Workers execute the jobs, and store 
the information about the execution in the metadata store. The content of the store can be used 
to monitor the correctness, and performance of the tasks' execution. The users can view the 
information through the GUI. 

In the project the Data Logistics Service will be used in the phase of staging workflows to execution, 
making sure that the data required for computation are available. Also, the results of the 
computation can be moved out of the processing facility, and registered automatically in the Data 
Catalog. 

4.2.4.2. Persistent Data Management 

In this section we present two solutions, Hecuba and dataClay, that aim at facilitating the 
utilization of persistent data in applications. Both solutions implement a common API that allows 
programmers to manipulate all the data as regular Python objects, regardless if they are persistent 
(stored in disk) or volatile (stored in memory). Both solutions can be integrated with PyCOMPSs to 
enhance data locality and to optimize the mechanism of passing parameters to tasks. The target 

                                                      
9 https://airflow.apache.org  

https://airflow.apache.org/
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applications of Hecuba are applications that use big amounts of data and can benefit from the 
parallel and asynchronous access that offer highly distributed key-value data stores. The target 
applications of dataClay are object-oriented applications that aim to avoid data movements by 
executing the object methods locally to the data. 

4.2.4.2.1. Hecuba 

Hecuba is a set of tools that provide programmers with transparent and efficient access to key-
value databases. The current implementation can interact with Apache Cassandra [9], which is a 
wide-column store that follows the key-value data model. Hecuba code is organized into two 
different layers.  

The first layer implements a Python API that allows programmers to access the persistent data as 
regular in-memory Python objects. This layer implements, transparently to the programmer, the 
data model in the database and keeps the mapping between both data structures: the in-memory 
objects defined by the programmer and persistent data. Hecuba also supports the definition of 
nested objects. Moreover, Hecuba is fully compatible with the NumPy library [10]. Hecuba 
implements the management of NumPy ndarrays storing them in a distributed fashion across the 
database nodes, to benefit from the database architecture and to increase the potential 
parallelism degree in accessing this data type. 

The second layer is implemented in C++ and contains the code to interact with the database 
backend. This code implements some optimizations in the access to the database as data 
prefetching, data caching and enhancing data locality. This layer defines its own interface which is 
used by the Python layer and which can be used by any non-python application to benefit from 
the optimizations in the data access. 

Hecuba is integrated with PyCOMPSs to enhance data locality and to avoid data serialization when 
tasks access persistent objects. 

To facilitate the utilization of key-value data stores on an HPC environment, Hecuba comes with a 
set of scripts to automate the configuration and deployment of the database, considering the 
particularities of queue-based systems. Also, these scripts facilitate the creation of snapshots of 
the database and recover them in the following job allocations. The snapshotting mechanism 
provides a fast and easy way of persisting data between executions without requiring a global and 
shared database service in the HPC installations. 

4.2.4.2.2. dataClay 

dataClay [11] is a distributed data store that manages data in the form of objects, with their 
properties and relationships, enabling the representation of complex data structures (matrixes, 
lists, graphs, …). These data structures are directly stored in a persistent device (Non-volatile 
memory, SSD …) without the need of any transformations. The physical location and format of 
persistent data is transparent to the application developer. 

The objects stored in dataClay also include the methods that enable their manipulation (retrieve 
or update the data they contain, or perform arbitrary computation on them). In this way, data 
locality is exploited as data does not need to be transferred to the application to be processed, but 
only the results of the methods defined. 

The architecture of dataClay consists of a Logic Module, which is the main authority for metadata, 
such as the structure and methods of each object type, or the locations of objects in the different 
Backends. Each backend stores a set of objects and is also in charge of executing the methods 
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associated with them. Objects are instantiated in memory in the backends, ready to be used and 
thus avoiding disk accesses during execution in order to improve performance. 

dataClay is integrated with the PyCOMPSs runtime, providing the appropriate interface to allow 
PyCOMPSs to get the locations of objects and create replicas (for read-only tasks) or versions (for 
read-write tasks), so that it can schedule the execution of tasks in the most appropriate location. 

 

4.2.5. HPDA/ML Frameworks 

One of the main reusable components of complex workflows are the HPDA and ML frameworks. 
They provide toolkits to easily program and efficiently execute DA algorithms or ML training and 
inferences. Therefore, every workflow running some of these codes will require to deploy and 
invoke these frameworks. Next paragraphs provide the description of the frameworks we plan to 
use during the project. 

4.2.5.1. Ophidia 

The Ophidia HPDA framework represents an open source solution, developed by CMCC, targeting 
the challenges related to management and analysis of scientific multi-dimensional data by joining 
HPC paradigms and Big Data approaches [12][13]. The framework provides in-memory, parallel, 
server-side data analysis and I/O and an internal storage model, based on the datacube abstraction 
inherited from the Online Analytical Processing (OLAP) systems, and a hierarchical organization to 
partition and distribute large amounts of multi-dimensional scientific data. 

The framework is primarily used in the climate science domain, although it has also been 
successfully exploited in other domains (e.g., astronomy, seismology, and smart cities) thanks to 
its flexible architectural design and storage model. 

Ophidia aims to provide a full software stack for data analysis at scale. The Ophidia Server 
represents the framework front-end component exposing multiple interfaces, such as SOAP or 
OGC-WPS. The server manages the interactions with the client-side and supports multiple 
execution modes ranging from interactive analysis to batch processing and workflows of analytics 
operators. Interactions with the server can be triggered through the Ophidia Terminal, a Command 
Line Interface, as well as the PyOphidia module, the Ophidia Python bindings. 

In terms of data management and analysis features, the framework supports around 50 operators 
for both sequential metadata management and parallel datacube processing, including for 
example data subsetting, aggregation, comparison and import/export for domain specific data 
formats (e.g., NetCDF). 

This second group of operators can be applied in parallel, exploiting a hybrid MPI+X approach, on 
the datacube fragments (i.e., chunks of data) distributed over the in-memory Ophidia storage 
layer. Each fragment is organized as a collection of multi-dimensional binary arrays. A wide set of 
low-level libraries implemented as User Defined Functions (UDF) and called Ophidia Primitives are 
provided to support the management and parallel processing of n-dimensional arrays. 

4.2.5.2. Parallel Social Data Analytics (ParSoDA) 

Parallel Social Data Analytics (ParSoDA) is a framework useful for parallel processing and analysis 
of social on top of a given parallel runtime environment [14]. Currently, ParSoDA is implemented 
on top of three environments: Hadoop, Spark, and PyCOMPSs. This means ParSoDA is currently 
available as a library for Java and Python. 
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A ParSoDA application is structured as a workflow that can be composed of the following stages: 

● Data Acquisition: data are collected from one or more social media sources or data sets 
and converted into a common format, which is easily readable by the next stages; 

● Data Filtering: data items are filtered by a chain of Boolean predicates which check some 
conditions that make the data eligible for next processing stages; 

● Data Mapping: all the filtered data are modified according to a cascade of functions, in 
such a way more refined data are obtained from the filtered ones; 

● Data Partitioning: data are partitioned using a group key; all items with the same group 
key are sorted according to a sort key and stored into shards; this stage is useful for 
optimizing data locality on the underlying runtime environment, because all the elements 
of a shard are sent to a node, which will compute the remaining stages on them; 

● Data Reduction: all the elements with the same group key are reduced or aggregated into 
a single final item or data structure that is associated to the same group key; 

● Data Analysis: the output data from the reduction stage are analyzed in order to extract 
or mine the target patterns; 

● Data Visualization: finally, the results of the analysis are visualized in different graphical 
formats. 

ParSoDA simplifies the development of data analysis applications by providing their deployment 
on the different nodes of a distributed computing system. The framework also exposes some built-
in functions for all the different stages. For example, ParSoDA provides some predefined crawling 
function useful for collecting data from different sources during the Data Acquisition stage. 
Moreover, the set of functions can be enriched and a developer can create its own functions for a 
specific application. 

4.2.5.3. Data Mining Cloud Framework (DMCF) 

The Data Mining Cloud Framework (DMCF) [15] is a service-oriented distributed software 
framework that aims to effectively execute complex workflows for data analysis applications on 
cloud systems. In particular, DMCF has been designed to exploit data-driven parallelism and it uses 
in-memory distributed storage of data in order to maximize data locality and reduce read/write 
latency to secondary storage. Moreover, DMCF allows for the creation of workflow applications 
directly through a programming interface that defines two alternative programming languages for 
workflow programming: VL4Cloud that is a visual language used for graphic development of 
applications, and JS4Cloud, a textual language based on JavaScript. Thanks to the adoption of these 
languages, DMCF simplifies the development of applications, requiring a low level of programming 
skills. 

The DMCF runtime enables the parallel execution of service-oriented data analysis workflows on 
multiple Cloud machines, so as to improve performance and ensure scalability of applications. To 
this end, the runtime implements data-driven task parallelism that automatically spawns ready-
to-run workflow tasks to the Cloud resources, considering dependencies among tasks and current 
availability of data to be processed. Parallelism is effectively supported by the data and tool array 
formalisms where the array cardinality automatically determines the parallelism degree at 
runtime. 

DMCF is implemented on the Microsoft Azure cloud platform, and it also includes a data-aware 
scheduler that uses Hercules [16] in order to exploit in-memory storage of temporary data. 
Hercules is a software component which aims to reduce access latency to/from secondary storage, 
by implementing a RAM disk on each node of the system. The data-aware scheduler of DMCF is 
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based on two task queues: a global waiting queue, in which every task is stored into before it is 
polled by a compute node of the system for execution; a local queue for each compute node where 
locally activated tasks are stored into. The global queue is useful to protect task metadata from 
node failures, because it is distributed among the cloud platform, so if a virtual node fails the global 
queue can be accessed anyway. Locally activated tasks are these polled by a node and prepared 
to be executed on it. Each node has at least a thread which polls tasks from the local queue, 
executes them and updates their metadata. In particular, the scheduler aims to execute the task 
whose parents are terminated and for which the current node is the best one with respect to data 
allocation. 

The DMCF allows a user for storing input and output files of the workflows into the native storage 
of Azure, where the user can access them, while speeding up the execution performance by using 
the Hercules in-memory storage for temporary files that are created and re-used on the compute 
nodes during the execution 

4.2.5.4. Dislib 

The Distributed Computing Library (dislib) [17] is a distributed machine learning library written in 
Python that enables large-scale data analytics on HPC infrastructures. Inspired by scikit-learn, dislib 
provides an estimator-based interface that improves productivity by making models easy to use 
and interchangeable. This interface also makes programming with dislib very easy to scientists 
already familiar with scikit-learn. Furthermore, dislib provides a distributed data structure that can 
be operated as a regular Python object, hiding the underlying distribution details to the final user. 
The combination of this data structure and the estimator-based interface makes dislib a 
distributed version of scikit-learn, where communications, data transfers, and parallelism are 
automatically handled behind the scene. 

Dislib is built on top of PyCOMPSs, offering good scalability and performance in distributed 
infrastructures, including clusters, Clouds, and supercomputers. Since PyCOMPSs automatically 
manages the infrastructure and the distribution of the computation, dislib applications can run in 
multiple platforms without changing the source code, and without having to worry about platform 
specific details, such as IP addresses and storage devices. In addition to this, dislib applications can 
also include custom PyCOMPSs tasks to perform data pre-processing or post-processing in parallel, 
or to combine computational workloads with data analytics. 

In addition to data management methods, dislib provides algorithms for clustering, classification, 
decomposition, and model-selection for parameter tuning among others. Dislib abstracts 
developers from all the parallelization details, and allows them to build large-scale machine 
learning workflows in a completely sequential and effortless manner. 

The main concepts around dislib are: 

● Distributed arrays: The built-in 2-dimensional arrays that can be operated in parallel, and 
that are used as the main input for the different algorithms. Distributed arrays store 
samples and labels in a distributed way that works as a regular Python object from the user 
point of view. 

● Data handling: Methods for loading data from files in common formats, such as CSV and 
LibSVM. 

● Unified interface: scikit-learn inspired interface for the different algorithms (i.e., fit, 
predict, etc.). This makes dislib's interface easy to learn for the users already familiar with 
scikit-learn, and allows a smooth transition of existing codes from scikit-learn to dislib. 
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Dislib can be easily integrated into any existing PyCOMPSs application, and can run in any 
computing platform supported by the COMPSs runtime. 

4.2.5.5. Helmholtz Analytics Toolkit (HeAT) 

HeAT [18] has been introduced in order to exploit distributed memory architectures as well as GPU 
driven computation and make it available through an easy to use NumPy-like interface. HeAT 
utilizes PyTorch as a node-local eager execution engine and distributes the workload on arbitrarily 
large high-performance computing systems via MPI. It provides both low-level array computations, 
as well as assorted higher-level algorithms. With HeAT, it is possible for a NumPy user to take full 
advantage of their available resources, significantly lowering the barrier to distributed data 
analysis.  

HeAT hinges on the concept of the DNDarray, which is an inherently distributed n-dimensional 
array akin to NumPy's ndarray. The DNDarray object is a virtual overlay of the disjoint PyTorch 
tensors, which store the numerical data on each MPI process. A DNDarray’s data may be 
redundantly allocated on each node, or one-dimensionally decomposed into evenly-sized chunks 
with a maximum size difference of one element along the decomposition axis. This data 
distribution strategy aims to balance the workload between all processes. During computation, 
API calls may redistribute data items. However, completed operations automatically restore the 
uniform data distribution. 

HeAT is used in various application domains, such as Earth system modeling, structural biology, 
neuroscience, and aeronautics and aerospace. When compared to similar frameworks, HeAT 
achieves speedups of up to two orders of magnitude. It has proven to be significantly faster than 
Horovod for training on the ImageNet classification and CitiScapes semantic segmentation tasks 
[19]. 

4.2.5.6. European Distributed Deep Learning library (EDDL) 

The European Distributed Deep Learning library (EDDL) is an open source library for Distributed 
Deep Learning and Tensor Operations in C++ for CPU, GPU and FPGA. The main goal of EDDL is to 
serve as a European Library for training and inference operations over Deep Learning neural 
networks. The main properties of the library are listed here: 

● EDDL works around the concept of tensors. Tensors can be instantiated and operated with 
tensor operations. Current supported operations include tensor manipulations, image 
operations, indexing & sorting, linear algebra, logic functions and mathematical functions. 

● Tensors can be instantiated and operated transparently on different target hardware 
devices, such as CPU, GPU, and FPGA. Tensor operations are abstracted away from the 
target hardware and, as such, allows the end user to transparently use different hardware 
devices for his/her operations with no prior knowledge. 

● With EDDL a neural network with standard layers used in other software packages such as 
TensorFlow/Keras can be used. Currently, layer types supported are: Core layers, auxiliary 
layers, activation layers, data augmentation and transformation, convolutions, pooling, 
normalization, reduction, and recurrent layers (among others). The library is Open Source 
and allows adding new kinds of layers, if needed. 

● The EDDL library includes import/export functionality mostly working with ONNX formats, 
therefore, is able to natively run a generated ONNX model with no additional effort from 
other frameworks. 
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● Python version of EDDL is available as a parallel Open Source project.10 
● EDDL is being adapted with COMPSs. Distributed training can be defined and run with EDDL 

in companion with COMPSs [20]. 

4.2.5.7. Framework Differentiation 

 
Figure 6. HPDA/ML framework differentiation by functionality. 

Figure 6 summarizes the features offered by the different DA and ML frameworks. Ophidia and 
ParSoDA focus on providing data analysis features, in particular Ophidia provides OLAP analytics 
operations and ParSoDA provides a set of data transformations (partitioning, mapping, merging, 
etc) and visualization functions. On the other hand, dislib, HeAT and EDDL are providing different 
algorithms for machine learning model training and inference. In particular, dislib and HeAT are 
targeting machine learning methods and HeAT and EDDL also target deep learning with different 
types of neural networks. In the middle, we have DMCF which provides some data mining and 
machine learning algorithms. 

 
Figure 7. HPDA/ML Framework differentiation by target parallelism and platform. 

Apart from the functional classification, we can also differentiate the frameworks by the target 
parallelization platform as depicted in Figure 7. For instance, EDDL is targeting the parallelism 
inside a node such as multi-core CPUs and accelerators (GPUs, FPGAs, ...), the rest of frameworks 
are focused on multi-node parallelization. In this part, we can differentiate three types of 
frameworks according to the target environments. On one hand, DMCF relies on cloud services for 
executing the algorithms, so it is currently targeting just cloud environments. On the other hand, 
Ophidia and HeAT rely on MPI for multi-node parallelism so their algorithms can benefit from high-
performance networks in HPC clusters. Then, ParSoDA and dislib rely on infrastructure agnostic 
technologies so their algorithms can work in both environments. Note that this classification is 

                                                      
10 https://github.com/deephealthproject/pyeddl 

https://github.com/deephealthproject/pyeddl
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done based on the main targets of the frameworks. However, due to the background libraries or 
the combinations with other tools they can support more complex environments and workflows. 
For instance, HeAT relies on PyTorch which allows to operate with GPUs; EDDL can be combined 
with dislib and PyCOMPSs for supporting distributed and federated training; and Ophidia, ParSoDa, 
dislib and EDDL operations can be decomposed in PyCOMPSs tasks creating integrated DA/ML 
workflows. 

 

4.3. Usage and Component Interactions 
One of the main current barriers for the adoption of HPC is the complexity of deploying and 
executing the workflows in federated HPC environments. Usually, users are required to perform 
software installations in complex infrastructures which are beyond their technical skills. Therefore, 
having the workflows ready for execution in a supercomputer could take large amounts of time 
and human resources. If it needs to be replicated to several clusters, the required time and 
resources will increase. To widen the access to HPC to newcomers, and, in general, to simplify the 
deployment and execution of complex workflows in HPC systems, eFlows4HPC proposes a 
mechanism to offer HPC Workflows as a Service (HPCWaaS) following a similar concept as the 
Function as a Service (FaaS) in the Cloud, but applying it for workflows in federated HPC 
environments. The goal is to hide all the HPC deployment and execution complexity from the final 
end users of the workflows in such a way that executing workflows only requires to perform a 
simple call to a REST API. It will also provide a mechanism to enable the sharing, reuse, and 
reproducibility of complex workflows 

 
Figure 8.HPC Workflow as a Service usage cases overview. 

Figure 8 shows an overview of how the proposed model works. The HPC Workflow as a Service is 
built on top of the eFlows4HPC software stack in order to provide the required functionality to 
develop, deploy and execute the complex workflows. Interactions of the users with HPCWaaS is 
done in two phases: one for workflow developers and another for workflow user communities. At 
development time, workflow developers are in charge of building the workflow using the first two 
layers of the eFlows4HPC stack. Once the workflow creation is finished, the workflow is registered 
in the HPCWaaS to make it available to the final users. After a successful registration, the workflow 
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developer receives a service endpoint from the HPCWaaS that other users can invoke to use the 
developed workflow. It will be automatically deployed and executed in the computing 
infrastructure using the rest of eFlows4HPC stack functionalities. Following paragraphs provide 
more details about how the different eFlows4HPC components interact to provide the required 
functionality in the different usage cases. 

4.3.1. Workflow Development 

One key part of the challenge mentioned in the introduction, is the implementation of complex 
workflows that combine HPC, HPDA, and ML frameworks. eFlows4HPC proposes two mechanisms  
to achieve this challenge as depicted in Figure 9. On the one hand, the software stack provides a 
set of registries, catalogs and repositories, providing workflow developers with the means to store 
the core components (HPC, DA, and ML frameworks) and the required data and ML models in such 
a way that they can be easily reused in different workflows and infrastructures. On the other hand, 
we propose the definition of a workflow description which enables the combination of the 
different workflow components. From this workflow description, the third layer of the eFlows4HPC 
software stack can be used to automatically deploy and execute the workflow in the Computing 
Infrastructures. 

 
Figure 9. Workflow development usage case. 

The proposed workflow description is composed of a combination of an Extended TOSCA syntax, 
the PyCOMPSs programming model, and a set of Data Logistics pipelines. In the first part, TOSCA 
(an orchestration standard) allows developers to specify which software and services are required; 
and how each component should be deployed, configured (linked to each other), started, stopped 
and deleted. In the second part, the PyCOMPSs programming model will provide the logic of the 
different components of the overall workflow. PyCOMPSs is a task-based programming model that 
enables the development of workflows that can be executed in parallel on distributed computing 
platforms. It is based on programming sequential Python scripts, offering the programmer the 
illusion of a single shared memory and storage space. While the PyCOMPSs task-orchestration 
code needs to be written in Python, it supports different types of tasks, such as Python methods, 
external binaries, multi-threaded (internally parallelized with alternative programming models 
such as OpenMP or pthreads), or multi-node (MPI applications). Thanks to the use of Python as a 
programming language, PyCOMPSs naturally integrates well with data analytics and machine 
learning libraries, most of them offering a Python interface. Finally, in the last part of the workflow 
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description, the data logistics pipelines allow developers to describe how the workflow data are 
acquired, moved and stored during the workflow execution in order to ensure the data is available 
in the computing infrastructure when required. 

As mentioned before, the workflow description is registered and stored in a workflow registry by 
means of the HPCWaaS interface. The result of this registration will produce a service endpoint 
which can be later used to invoke the execution of the workflow. 

 

4.3.2. Workflow Deployment and Execution 

When users want to execute the registered workflows, they only need to invoke the endpoint 
provided at the end of the workflow development phase. As result of this invocation, the last layers 
of the eFlows4HPC software stack are used to provide an automatic and holistic workflow 
deployment and execution in federated computing HPC infrastructures. This functionality is 
provided by the cooperation of several components at different levels. At the highest level (Figure 
10), the Ystia Orchestrator (Yorc) is in charge of orchestrating the deployment of the main 
workflow components in the computing infrastructures and managing their lifecycle (configuring, 
starting services) as described in the TOSCA part in the workflow description. In parallel to the 
component deployment, the data logistics part of the description is used by the Data Logistics 
Service to set up the required data movements, such as the data stage-in and stage-out, or 
periodical transfers to synchronize data produced outside the HPC systems. 

 

 
Figure 10. Workflow deployment 

Once the workflow components and data are deployed, Yorc submits the execution of the main 
workflow processes in the computing infrastructure (Figure 11). This step can be supported by 
UNICORE, which is in charge of managing the federation of HPC compute and data resources in 
order to make them available to users in a secure way. At the lowest level, the COMPSs runtime 
will coordinate the invocations of the workflow components implemented with the PyCOMPSs 
task-based programming model. As mentioned before, COMPSs supports several task types which 
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can include HPC simulations, DA transformations, etc. The runtime dynamically generates a task-
dependency graph by analyzing the existing data dependencies between the invocations of tasks 
defined in the Python code. The task graph encodes the existing parallelism of the workflow, which 
can be used to schedule the executions in the resources already deployed by Yorc. Based on this 
scheduling the COMPSs runtime can interact with the different HPC, DA and ML runtimes in order 
to coordinate the resources usage performed by the different invocations to avoid overlaps and 
getting the maximum performance to the available resources. Apart from the dynamic task graph 
generation, the COMPSs runtime is also able to react to task failures and exceptions in order to 
adapt the workflow behavior accordingly. These functionalities, together with similar features 
provided by Yorc at a higher level, offer the possibility of supporting workflows with a very dynamic 
behavior, that can change their configuration at execution time upon the occurrence of given 
events, such as failures or exceptions. 

 

 
Figure 11. Workflow execution 

Finally, regarding the integration of the data management and computation, the eFlows4HPC stack 
also provides two solutions for persistent storage: Hecuba (based on key-value databases) and 
dataClay (object-oriented distributed storage). These solutions can be used in PyCOMPSs 
applications to store application objects as persisted objects, either in disk or in new memory 
devices, such as NVRAM or SSDs, enabling to keep data after the execution of the application. This 
changes the paradigm of persistent storage in HPC, dominated by the file system, to other more 
flexible approaches. By using persisted objects, application patterns such as producer-consumer, 
in-situ visualization or analytics, can be easily implemented. 

 

4.4. Requirement Fulfilment by Architecture Components 
The following table provides the relationship between the components of the eFlows4HPC 
architecture and the requirements extracted from the different sources. For each requirement we 
have identified which components are involved in providing the required functionality. 
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Table 7. Requirements-to-component matrix 

Requirement 

        Components Involved 
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P1-1 Distributed SVD       x x      

P1-2 Storing of hyper-reduced model     x         

P1-3 ANN model     x  x       

P1-4 Clustering model     x x x       

P1-5 Persistent storage            x x 

P1-6 Restart        x x x    

P1-8 Workflow orchestration       x       

P1-9 ML inference x        x     

P2-1/P3-4 Hyper Reduced Model Deployment x    x   x x x x   

P2-2/P3-6 Portability and reusability x  x x     x     

P1-7/ P2-
3/P3-8 

Workflow Orchestration /  
Integrated workflow management 

x       x x x    

P2-4/P3-9 Integration with permanent storage   x         x x x 

P2-5 Workflow adaptability        x x     

P2-6 
Access to intermediate in-memory 
results 

       x    x x 

P2-7 
AI integration for ensemble member 
pruning 

      x x    x x 

P2-8 ML/DL capabilities     x  x       

P2-9 DA capabilities      x        

P2-10 High Performance Computing support        x x x    

P2-11 Multi-member analysis      x x x x   x x 

P3-1 Urgent computing access         x x    

P3-2 Data accessibility           x   

P3-3 Data replication   x         x x x 

P3-5 Infrastructure interoperability         x x x x   

P3-7 Streaming Data Source        x   x x x 

P3-10 Inference of online/offline ML models     x  x       

P3-11 DA integration        x  x    x x 

P3-12 Workflow malleability        x x x    

CMP-1 Access to HPC specific devices   x   x x x x     

CMP-2 Support optimized kernels   x   x x x x     
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CMP-3 Service deployments x        x     

CMP-4 Service Invocation        x      

CMP-5 Multi-node execution support        x x x    

CMP-6 Multicore execution support        x      

HPC-1 HPC Cluster access support         x x    

HPC-2 HPC Data Transfers support          x x   

HPC-3 Singularity Container support      x x x x   x x 

HPC-4 Infrastructure Service deployment         x x x   

HPC-5 Queue System        x x x    

 

5. Metrics 
To evaluate the improvements introduced by the eFlows4HPC methodology and architecture, we 
have defined a set of end-user metrics which have been divided in two parts: common workflow 
metrics selected from the technical areas targeted by the project, and pillar specific metrics, which 
are focused on measuring the improvements related to the scientific process of each pillar. The 
following paragraphs present the common workflow metrics while pillar specific metrics are 
presented in deliverables D4.1, D5.1 and D6.1.  

The eFlows4HPC project will improve different aspects of the lifecycle of the complex workflows 
(development, deployment and execution). To measure these improvements, we have defined a 
set of relevant metrics from different areas related to the technical project objectives. Next 
paragraphs introduce the considered areas and afterwards Table 8 presents the selected metrics. 

 Development & Maintenance: Metrics of this area are intended to measure how difficult 
the development of a software and its maintenance is. They are normally measured by 
tools to inspect source codes (such as Sonar) providing the lines of code, cyclomatic 
complexity or the number of duplicated code blocks. Lines of code provides a general 
metric of the effort for programming and maintaining a code: an increment/reduction of 
lines of code, implies an increment/reduction of effort to program, understand and modify. 
The cyclomatic complexity is a metric to measure how complex a piece of code is, so it is 
mainly affecting the maintenance. Finally, the duplicated blocks metric is also affecting the 
maintainability because a change in a duplicated code must be done in several places. 
Therefore, we consider lines of code metric as the most relevant for development and 
maintenance. Due to the project being mainly focused on the workflow development and 
the integration of its main components, this metric will be only applied to workflow codes 
but not in software used inside the workflow components (simulators, libraries etc.).  

 Accessibility & Deployment: Metrics of this area are aimed at measuring the deployment 
process of a workflow in terms of how portable or reusable a workflow is, and how long a 
developer or an automated process will take to deploy the workflow in a selected 
infrastructure.  

 Performance: Metrics of this area focus on the quality of a workflow execution. These 
quality metrics are normally calculated by measuring the execution time of a workflow in 
different conditions such as input data sets or infrastructure configurations to know if the 
execution is efficient and scalable. These metrics can be applied to the whole workflow 
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execution, but also to kernels whose optimization will considerably affect the total 
workflow performance. 

 Data Management: Another important area when executing distributed computing 
applications is data management. Metrics of this area are focused on evaluating how 
efficient a workflow execution is in terms of data management. These metrics can provide 
information about the number of data operations, the size of these operations and 
duration of these operation which is crucial to evaluate if the execution is using a proper 
data locality 

 Reliability: Failures can happen when executing complex workflows in large computing 
infrastructures. There are some failure recovery techniques to mitigate these failures (such 
as retries, data replication or execution redundancy) which can be implemented by the 
user or transparently supported by the workflow manager. Metrics on the reliability area 
are proposed to evaluate how tolerant a workflow is to unexpected failures. 

 Energy & Cost: Despite most scientific HPC users are not paying for its usage, the 
maintenance of HPC infrastructures has a cost, not only in the initial investment or the 
system administration but also in the energy consumed during the operation. Metrics 
defined in this area measure the energy consumed and the cost associated to a workflow 
execution. Some infrastructure monitoring systems are providing accounting information 
about the resource usage and energy consumption of the executed jobs. These metrics for 
the workflows can be calculated as the aggregated metric for all the jobs executed by a 
workflow.  

Table 8. Common workflow metrics 

Acronym Name Description Area 

LoC Lines of Code Number of Lines of code in the workflow implementation. 
Development & 

Maintenance 

DoP Degree of Portability 
Percentage of workflow components that can be reused in other 
infrastructures and workflows. 

Accessibility & 
Deployment 

DT Deployment Time  Time elapsed to deploy the workflow. 
Accessibility & 
Deployment 

ET Execution Time Time elapsed to execute a workflow. Performance 

SU Speed-up 

Execution time improvement when running with larger resources. 
Calculated as: 
SU(N) = ET(base)/ET(N)  
where ET(base) is the baseline and ET(N) is the execution with N 
times larger resources. 

Performance 

Eff Efficiency  

Execution time degradation when running larger problems. 
Calculated as: 
Eff(N) = ETbase(base)  /ETN(N) 
where ETbase(base) is the execution of the baseline problem and 
infrastructure and ETN(N) is the execution time of N times larger 
problem and infrastructure. 

Performance 

TD Transferred Data 
Amount of data transferred (in bytes) by the workflow between 
different compute nodes of the computing infrastructure. 

Data 
Management 

DM Data Movements  
Number of transfer operations between different compute nodes 
of the computing infrastructure. 

Data 
Management 

IOT I/O Time Percentage of Execution time performing I/O operations.  
Data 

Management 

FTC 
Fault-tolerant 
components 

Percentage of workflow components that are fault-tolerant. Reliability 

CH Core/Hour 
Number hours of a CPU Core consumed by the workflow 
execution.  

Energy & Cost 

EC Energy Consumption 
Energy consumed (Wh or Joules) associated with a workflow 
execution. 

Energy & Cost 
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The metrics defined above and the specific pillar metrics will be using during the evaluation 
process of the project. This evaluation will be performed at the end the two implementation 
phases defined in the project description. The pillars’ teams supported by the technical teams at 
WP1 and WP3 will measure the defined metrics before and after applying an improvement 
introduced by the eFlows4HPC methodology or functionality provided by a component of the 
software stack. The difference between these metrics measurement will quantify the 
improvements done or possible side effects. 

6. Conclusions 
One of the main steps of a software infrastructure is the definition of its requirements and 
architecture. The eFlows4HPC project has conducted during these first months a key activity by 
collecting requirements from the Pillars’ workflow applications, from the components that will 
compose its software stack and constraints that should be considered from the HPC centers. All 
this process has been performed involving key players in multiple work packages (WP1, WP4, WP5 
and WP6) and external sources (HPC centers).  

This document has presented the first version of the requirements and architecture, and the 
definition of a set of metrics for the evaluation of the workflows. A revision of this document will 
be performed after phase 1, in months M18 to M20. This second version will take into account the 
feedback received from the Pillars’ on the first release of the eFlows4HPC software stack.  
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7. Acronyms and Abbreviations 
- AAI - Authentication Authorization Infrastructure 

- AI - Artificial Intelligence 

- ANN – Artificial Neural Network 

- API - Application Programming Interface 

- CaaS - Container as a Service 

- CLI - Command Line Interface 

- CPU - Central Processing Unit 

- D - Deliverable 

- DA - Data Analytics 

- DAG - Directed Acyclic Graph  

- DC - Data Catalog 

- DL - Deep Learning 

- DLS - Data Logistics Service 

- DMCF - Data Mining Cloud Framework 

- DNN - Dynamic Neural Network 

- EDDL - European Distributed Deep Learning library 

- ETL - Extract, Transform, Load 

- FaaS - Function as a Service 

- FAIR - Findable Accessible Interoperable Reusable 

- FPGA - Field Programmable Gate Array 

- FTP - File Transfer Protocol 

- GPU - Graphics Processing Unit 

- GUI - Graphical User Interface 

- HeAT - Helmholtz Analytics Toolkit 

- HPC - High Performance Computing 

- HPCWaaS - HPC Workflow as a Service 

- HPDA - High-performance Data Analytics 

- IaaS - Infrastructure as a Service 

- ID - Identifier 

- JSON - JavaScript Object Notation 

- KPI - Key Performance Indicator 

- M - Month 

- ML - Machine Learning 

- MPI - Message Passing Interface 

- MR - Model Repository 

- NN - Neural Network 

- NVRAM - Non-Volatile Random Access Memory 

- OLAP - On-Line Analytical Processing 

- ONNX - Open Neural Network Exchange 

- ParSoDA - Parallel Social Data Analytics 

- POSIX - Portable Operating System Interface 

- PRACE - Partnership for Advanced Computing in Europe 
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- REST - Representational State Transfer 

- SC - Software Catalog 

- SCP - Secure Copy 

- SSD - Solid State Disk 

- SSH - Secure Shell 

- SVD - Singular Vector Decomposition 

- TOSCA - Topology and Orchestration Specification for Cloud Applications 

- UDF - User Defined Functions 

- UI - User Interface 

- VPN - Virtual Private Network 

- WP - Work Package 

- WR - Workflow Registry 

 

  



 

 37 

D1.1 Requiements , Metrics and Architecture Design 
Version 1.0 

8. References 
[1] OASIS Standard. “Topology and orchestration specification for cloud applications version 

1.0”. 2013. On-line: http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html 
[2] Tejedor, E., et al. "PyCOMPSs: Parallel computational workflows in Python." The 

International Journal of High Performance Computing Applications 31.1 (2017): 66-82. 
[3] Badia, Rosa M., et al. "Comp superscalar, an interoperable programming framework." 

SoftwareX 3 (2015): 32-36. 
[4] Elshazly H, Lordan F, Ejarque J, Badia RM. “Performance Meets Programmabilty: Enabling 

Native Python MPI Tasks In PyCOMPSs”. In 28th Euromicro International Conference on 
Parallel, Distributed and Network-Based Processing (PDP) (2020) (pp. 63-66). IEEE. 

[5] Ramon-Cortes C, Lordan F, Ejarque J, Badia RM. “A programming model for Hybrid 
Workflows: Combining task-based workflows and dataflows all-in-one”. Future Generation 
Computer Systems. (2020); 113:281-97. 

[6] Ejarque, J., Bertran, M., Álvarez, J., Conejero, J., Badia, R.M. “Managing Failures in Task-
Based Parallel Workflows in Distributed Computing Environments”. In European 
Conference on Parallel Processing, (2020) Aug 24 (pp. 411-425). Springer 

[7] Lordan, F., et al. "Servicess: An interoperable programming framework for the cloud." 
Journal of grid computing 12.1 (2014): 67-91. 

[8] Rybicki, J.  "Designing a Data Logistics and Model Deployment Service". , The Sixth 
International Conference on Big Data, Small Data, Linked Data and Open Data, 2020 

[9] Lakshman, A., Malik, P. “Cassandra: a decentralized structured storage system”. ACM 
SIGOPS Operating Systems Review. Volume 44, Issue 2,1-92 pages. 2010 

[10] Harris, C.R., Millman, K.J., van der Walt, S.J. et al.” Array programming with NumPy”. 
Nature 585, 357–362 (2020). 

[11] Martí, J., Queralt, A., Gasull,D., Barceló, A., Costa,J.J., Cortes, T. “Dataclay: A distributed 
data store for effective inter-player data sharing”. Journal of Systems and Software 131: 
129-145 (2017) 

[12] S. Fiore, A. D’Anca, C. Palazzo, I. T. Foster, D. N. Williams and G. Aloisio, "Ophidia: Toward 
Big Data Analytics for eScience", Proc. Int. Conf. Comput. Sci., pp. 2376-2385, 2013, doi: 
10.1016/j.procs.2013.05.409 

[13] D. Elia, S. Fiore and G. Aloisio, "Towards HPC and Big Data Analytics Convergence: Design 
and Experimental Evaluation of a HPDA Framework for eScience at Scale," in IEEE Access, 
vol. 9, pp. 73307-73326, 2021, doi: 10.1109/ACCESS.2021.3079139 

[14] L. Belcastro, F. Marozzo, D. Talia, P. Trunfio, "ParSoDA: High-Level Parallel Programming 
for Social Data Mining", Social Network Analysis and Mining, vol. 9, n. 1, 2019. 

[15] F. Marozzo, D. Talia, P. Trunfio, "A Workflow Management System for Scalable Data 
Mining on Clouds". IEEE Transactions On Services Computing, vol. 11, n. 3, pp. 480-492, 
2018. 

[16] F. Marozzo, F. Rodrigo Duro, J. Garcia Blas, J. Carretero, D. Talia, P. Trunfio, “A Data-Aware 
Scheduling for Workflow Execution in Clouds”, Concurrency and Computation: Practice and 
Experience, vol. 29, n. 24, Wiley InterScience, 2017. 

[17] J. Álvarez Cid-Fuentes, S. Solà, P. Álvarez, A. Castro-Ginard, and R. M. Badia, “dislib: Large 
Scale High Performance Machine Learning in Python,” in Proceedings of the 15th 
International Conference on eScience, 2019, pp. 96-105 

[18] Götz, M.; Coquelin, D.; Debus, C.; Krajsek, K.; Comito, C.; Knechtges, P.; Hagemeier, B.; 
Tarnawa, M.; Hanselmann, S.; Siggel, M.; Basermann, A. & Streit, A., HeAT -- a Distributed 

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html


 

 38 

D1.1 Requiements , Metrics and Architecture Design 
Version 1.0 

and GPU-accelerated Tensor Framework for Data Analytics, 2020, 
https://arxiv.org/abs/2007.13552 

[19] Coquelin, D.; Debus, C.; Götz, M.; von der Lehr, F.; Kahn, J.; Siggel, M. & Streit, A., 
Accelerating Neural Network Training with Distributed Asynchronous and Selective 
Optimization (DASO), 2021, https://arxiv.org/abs/2104.05588 

[20] Flich, J., et al. "Distributed Training on a Highly Heterogeneous HPC System." International 
Conference on Embedded Computer Systems. Springer, Cham, 2020. 

  

https://arxiv.org/abs/2007.13552
https://arxiv.org/abs/2104.05588


 

 39 

D1.1 Requiements , Metrics and Architecture Design 
Version 1.0 

Appendix A.  

Workflows Requirements Template 

Workflow overview  
 Identify and introduce the main workflow phases/building blocks 

 

Workflow Requirements for eFlows4HPC Software Stack  

Building blocks Requirements 

Building block/phase 1: 

Input/output data: 

 Input and output data of the building block 

Computational Granularity:  

coarse-grain(>secs)/ fine-grain (<1sec) 

Specific software/hardware:  

HPC kernels or other tools which are mandatory to run the building block 

Programming Languages:  

 Languages of the APIs or software used in the building block 

DA requirement: 

Require to do whatever DA algorithm to perform … 

ML requirements: 

Require to support clustering … 

Integration of DA, ML with HPC kernels: 

The DA algorithm preprocesses the input of simultation X. The output of simulation X is the 
training data for the k-means clustering  

Other required functionalities: 

 

Building block/phase 2: 

…. 

Workflow deployment /execution requirements 

 

Deployment restrictions 

Locality, Licenses, Data availability 
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Expected execution requirements 

(Dynamicity, replication, ..). 

E.g. 

Before execution BB1 must be deployed and executing during the whole workflow execution. 

The workflow starts executing BB1…. 

 

Data Requirements 

Data flow:  

Sources / Intermediate data /Outputs 

Persistency requirements: 

in –memory/disk 

Data types/structure  

collections of small items, big items, arrays… 

Data creation-consumption pattern  

1 to 1, 1 to N, stream…  

E.g. ( Maybe a graph) 

The input of the workflow is … and it is an x-dimensional array of floats… it is normally stored in … 
must be copied to the computing location of BB 1 

The output of BB1 which is a key, value sets  must be used by BB2 and BB3. It is generated every 
iteration and can be consumed by BB2 once the data is available.   

BB2 consumes BB1 data and generates ... 

BB3 requires all data generated BB1 and BB2 to create a model which must be stored in a repository 
for re-usage. 
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Appendix B.  

HPC System Administration Questionnaire 

Background and Goal 
The eFlows4HPC projects aims to build a European Stack for managing workflows for HPC. The idea 
is to provide a set of tools and services in order to facilitate the development, sharing, deployment 
and execution of complex workflow in HPC systems. We have created this questionnaire to gather 
what are common practices and main security constraints when accessing HPC sites. This 
information will be analyzed by the consortium member to detect the possible barrier for adopting 
the proposed eflows4HPC software stack and gathering requirements for the workflow 
deployment in supercomputers. 

Available Infrastructure and access request 
- Supercomputers: (Architecture + Accelerator if apply )  

- Access request procedure: 

o PRACE access requests (yes/no) 

o Other  

Access and security  
- Access to supercomputers and data transfers possibilities 

o SSH/SCP: (Yes/No) 

o Unicore:  

o Other:  

- User identification 

o SSH Keys: Yes/No 

o Other certificates:  

- Firewall policy: 

o Available Income connections:  

o Available Outcome connections:  

- Restrictions on login nodes 

o Is it possible to deploy services/deamon in login nodes to access queue system? 

o Limits interactive nodes (time, memory, num processes, ...)  

- Service nodes 

o Do you have service nodes? 

o Is it possible to deploy new services on them? 

o Are they accessible from outside: Is there any proxy service to access services 

deployed in the cluster? 

- Connectivity between compute nodes: ( Enumerate restrictions if any) 

- Connectivity between login nodes to compute nodes: 
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Queue system and Shared disk 
- Available Queue system (Slurm, LSF, PBS, Other) 

- Remote execution command to spawn processes/command between nodes (srun, 

blaunch, ssh, 

- Shared disk systems (GPFS, Lustre,…) 

- Folder/nodes where Shared disk is mounted (Example: /home in all nodes, /scratch only 

compute nodes) 

Software Management 
- Environment management: 

o Modules: (Yes/No) 

o Other 

- Building tools without root privileges: 

o Easy-build: (Yes/No)  

o Spack:  

o Conda:  

o Other:  

- Containers support 

o Docker:  

o Singularity 

o Podman:  

o Shifter:  

o Pcocc:  

o Other:  

Data Infrastructure (hosting and management) 
- Data transfer nodes/services/interfaces (Please enumerate) 

- Available data storage levels (NVMe, SSD, HDD, Shared Disk, Archive…):  

o Persistence between execution (in storage levels) 

o Capacities (BW, size, etc.)  

 


