

D1.1 Requirements, Metrics and Architecture
Design

Version 1.0

Documentation Information

Contract Number 9555558

Project Website www.eFlows4HPC.eu

Contractual
Deadline

30.06.2021

Dissemination Level PU

Nature R

Author Jorge Ejarque (BSC)

Contributors

Rosa M. Badia (BSC), Yolanda Becerra (BSC), Anna Queralt(BSC), François
Exertier (Atos), Domenico Talia (DtoK), Salvatore Giampà (DtoK), Jedrzej
Rybicki (FZJ), Bernd Schuller (FZJ), Björn Hagemeier (FZJ), Alessandro
D’Anca (CMCC), Donatello Elia (CMCC), José Flich (UPV)

Reviewer Jedrzej Rybicki (FZJ)

Keywords Requirements, Architecture, metrics, workflows

This project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 955558. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and Spain, Germany,
France, Italy, Poland, Switzerland, Norway.

 1

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

Change Log

Version Description Change

V0.1 Proposed table of contents

V0.2 Components and HPC requirements

V0.3 Architecture description

V0.4 Pillars requirements

V0.5 Metrics and DA/ML frameworks differentiation

V0.6 Ready for internal review

V1.0 Final version with reviewer comments addressed

 2

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

Table of Contents

1. Executive Summary ... 4

2. Introduction ... 5

3. Requirements & Constraints ... 6

3.1. Requirements from Pillars .. 6

3.2. Requirements and Constraints from Components ... 9

3.3. Constraints from HPC Centers .. 9

4. Architecture ... 11

4.1. Overview ... 11

4.2. Component Descriptions .. 12

4.2.1. Workflow Definition ... 12

4.2.2. Workflow Accessibility and Reusability .. 15

4.2.3. Workflow Deployment and Execution ... 18

4.2.4. Data Management .. 20

4.2.5. HPDA/ML Frameworks ... 22

4.3. Usage and Component Interactions ... 27

4.3.1. Workflow Development ... 28

4.3.2. Workflow Deployment and Execution ... 29

4.4. Requirement Fulfillment by Architecture Components ... 30

5. Metrics ... 32

6. Conclusions .. 34

7. Acronyms and Abbreviations ... 35

8. References ... 37

Appendix A. .. 39

Workflows Requirements Template .. 39

Workflow overview .. 39

Workflow Requirements for eFlows4HPC Software Stack .. 39

Building blocks Requirements .. 39

Workflow deployment /execution requirements .. 39

Data Requirements ... 40

Appendix B. .. 41

HPC System Administration Questionnaire ... 41

Background and Goal ... 41

Available Infrastructure and access request .. 41

 3

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

Access and security .. 41

Queue system and Shared disk .. 42

Software Management .. 42

Data Infrastructure (hosting and management) .. 42

 4

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

1. Executive Summary
This document presents the work performed in WP1 regarding requirements gathering, design of
the eFlows4HPC workflow platform and selection of the metrics to evaluate improvements in the
Pillars workflows.

Requirements for the eFlows4HPC platform have been gathered from three sources (Pillars,
Software components, and HPC sites). From Pillars we have gathered their requirements with
regard the required functionalities for implementing, deploying and executing and managing the
data of their different workflows. The process to obtain these requirements has been through a
template proposed by WP1 asking for relevant information about the Pillars’ workflows. Once the
templates were filled, several meetings between WP1 and each of the Pillars (WP4, WP5 and WP6)
were organized to discuss and understand the requirements. From this process, a total of 33
different requirements from the Pillars. The requirements are summarized in Table 1, Table 2 and
Table 3, and provide requirements on the characteristics needed in the workflow management
system, in the data and storage management, in the type of artificial intelligence tools, in the
software deployment tools, portability, usability, interoperability and accessibility.

The second source of requirements are the software components which must be deployed in the
computing infrastructure, either HPC simulators required by the workflow or components of the
eFlows4HPC software stack such as Machine Learning (ML) or Data Analytics (DA) frameworks,
runtimes and data management tools. We have studied the deployment and execution processes
of this software to identify the required functionalities in the different phases of the workflow
lifecycle. Table 4 summarizes the findings for this second set of requirements, which include
aspects related to software deployment and access to specific HPC hardware to get the expected
performance.

Finally, constraints from HPC data centres must be also considered in order to reduce the barriers
for adopting the eFlows4HPC methodologies and software stack. Supercomputers are singular
infrastructures shared by multiple users at the same time. System administrators have to preserve
the security of the data processed while keeping the performance of the whole system. For this
reason, supercomputers have several constraints in terms of accessibility and usability which have
to be taken into consideration when producing software or services using these systems. To gather
these constraints, we have conducted a survey with different HPC centres involved in the project.
Table 5 summarizes the constraints posed by the HPC centres which mainly relate to the
deployment of services that persist between executions or require external connectivity, the
access protocol for login and data transfer, software management packages, file system and job
scheduler. From the conclusions of the analysis of these surveys, a set of requirements were
derived (see Table 6).

In total, a list of 38 requirements were derived. From this list of requirements, we have identified
the components that can provide the required functionality (Table 7).

Another set of activities of the WP1 in this initial phase was devoted to the design of the
eFlows4HPC architecture. This document also presents the details of the first version of this
architecture including the description of the components organized in functional groups
(Workflow Accessibility/Reusability, Workflow Development, Workflow Deployment and
Execution and Data management), the main usage cases and the component interactions derived
from these cases. WP1 partners were organized in working groups to analyze and compare the
different components that have similar or related characteristics. The overlaps, differences and
possible interactions were discussed.

 5

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

The difference phases in the lifetime of an eFlows4HPC workflow were designed: development,
deployment and execution, defining what we have called HPC Workflows as a Service (HPCWaaS).
In the first phase, the workflow developer with use the extended TOSCA, PyCOMPSs and Data
logistics Pipelines to design the workflow. The workflow will be based on different types of
components: HPC solvers or simulators, ML and DA tools, as well as data sources. These elements
will be available in the Data Catalog, the Model Repository and the Software Catalog. Once
available, the workflow will be published as a service in the Workflow Registry. Users will be able
to select the workflow and request its deployment. For the deployment, the Ystia Orchestrator
and the Data Logistics Service will collaborate to deploy the different workflow components in the
HPC centres and in the auxiliary cloud (used for the services that cannot be executed in HPC due
to its constraints). Finally, the workflow will be executed, orchestrated mainly by the PyCOMPSs
runtime, in cooperation with the Ystia orchestrator. The workflows will be very dynamic, not only
because the required executions (task graph) is generated at run but also because the PyCOMPSs
runtime is able to react to failures and exceptions, enabling to define a very dynamic and
adaptative behaviour. To exploit new architectures such as accelerators or the EPI, specific
optimized kernels will be integrated in the workflow executions. The envisaged environment also
integrates solutions for persistent storage (dataClay and Hecuba) that will enable to exploit new
storage paradigms, and optimized kernels.

The last part of this deliverable provides the definition of a set of selected common metrics
according to the aspects related to the project technical objectives. These metrics will be used in
different phases of the project to evaluate the improvements introduced by eFlows4HPC
technologies in the pillars’ workflows.

2. Introduction
Traditionally, High-Performance Computing (HPC) has been used to provide computational
resources, software environments and programming models to enable the execution of large-scale
e-science applications with the objective of generating predictions of real processes (weather
forecasting, wave propagation, protein interaction ...). Recently, with the introduction of Big Data
and Artificial Intelligence (AI) technologies, these applications have evolved to more complex
workflows where traditional HPC simulations are combined with data analytic (DA) and machine
learning (ML) algorithms. However, the combination of these different technologies in a single
workflow require to dedicate a lot of effort to manage the integration of different frameworks in
different phases of the workflow lifecycle. Starting from the development phase, where the
integration of different workflow HPC, DA and ML parts requires additional programming efforts,
passing through the deployment phase, where different tools and frameworks must be deployed
in the infrastructure, and the execution phase, where the execution of all the different
components must be orchestrated in a dynamic and intelligent way.

The eFlows4HPC project aims at delivering a workflow platform that consists of the software stack
and an additional set of methodologies that will enable the integration of HPC simulation and
modelling with big data analytics and machine learning in scientific and industrial applications.
From one side, the eFlows4HPC software stack aims at providing the required functionalities to
manage the lifecycle of such complex workflows; form the other side, it introduces the HPC
Workflow as a Service (HPCWaaS) concept. It will apply the Function as a Service (FaaS) concept to
the HPC environments which will hide all the complexity of a HPC Workflow deployment and
execution to end users. These project outcomes demonstrate, through three application Pillars

 6

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

with high industrial and social relevance (manufacturing, climate and urgent computing for natural
hazards), how the realization of forthcoming efficient HPC and data-centric applications can be
developed with the proposed novel workflow technologies.

This document reports the work performed in requirements gathering and the eFlows4HPC
architecture definition. It is organized as follows. Section 3 reports the process of gathering the
requirements from the different eFlows4HPC stakeholders (Pillars, Software components, and HPC
sites). Then, the software stack architecture, the main usage cases of the HPCWaaS methodology,
and the relation of the requirements with the software stack components is presented in Section
4. Finally, Section 5 describes the metrics selected to evaluate the implemented workflows
according to the main technological areas related to the project objectives.

3. Requirements & Constraints
The requirements gathering process for the eFlows4HPC platform has been split in three main
parts. The main source of requirements are the project Pillars. These pillars are the uses cases
representing the user communities (manufacturing, climate and urgent computing) which will
benefit from the complex workflows targeted by the eFlows4HPC project. They will drive and
validate the implementation of eFlows4HPC platform providing the required functionalities for
implementing, deploying and executing and managing the data of their different workflows.

The second source of requirements are the software components which must be deployed in the
computing infrastructure, either HPC simulators required by the workflow or components of the
eFlows4HPC software stack such as ML or DA frameworks, runtimes and data management tools.

Finally, constraints from HPC data centres must be also considered in order to reduce the barriers
for adopting the eFlows4HPC methodologies and software stack.

3.1. Requirements from Pillars
Collecting the requirements from the pillars has been performed in collaboration between WP1
and WP4, 5 and 6 which correspond to the different Pillars of the project. This process is usually
complex due to the differences in the terminology used in the Pillars domain and the one used by
software developers and architects. To coordinate this process WP1 proposed a template
(Appendix A) pointing out the relevant information to extract from the Pillars’ workflows. This
information was trying to identify what are the requirements for the eFlows4HPC platform in the
different phases of the workflow lifecycle. These templates have been filled by the teams working
on the different workflows defined by the pillars, and their results have been analyzed by the Pillars
teams together with the WP1 team. The results of this analysis are reported in deliverables D4.1,
D5.1 and D6.1, and the following tables are the summary of the requirements from the different
pillars. These tables contain an identifier (ID) to easily identify the source of the requirement (P1:
Pillar 1, P2: Pillar 2, and P3: Pillar 3), the name, description and priority assigned by pillar teams.
More details about these requirements can be found in the mentioned deliverables.

 7

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

Table 1. Summary of requirements from Pillar I: Digital twin in Manufacturing.

ID Name Description Priority

P1-1 Distributed SVD
Requires an optimized distributed execution of the Singular Value
Decomposition (SVD) algorithm to analyze large scale matrices which can
exceed the memory of different computing nodes of a cluster.

Must

P1-2
Storing of hyper-
reduced model

Requires storing and transferring the meshes and the trained ML model
needed to reconstruct the hyper-reduced model, together with the
solver executable needed to run it.

Must

P1-3 ANN model

Require Artificial Neural Networks (ANN) (probably convolutional) to
train autoencoders. This may provide an attractive option to improve the
reduction ratio of the reduced model. Here both training data and the
output to be used in the inference step need to be saved.

May

P1-4 Clustering model
Clustering algorithms as an option to improve the reduction ratio. Here
both training data and the output to be used in the inference step need
to be saved.

Should

P1-5 Persistent storage Requires persistent storage for data to be consumed between the steps May

P1-6 Restart
Workflow programming and management have to allow re-start the
Reduced-Order-Model (ROM) computation according to validation
results.

Should

P1-7
Workflow
orchestration

Workflow management is also required through the phases to
coordinate the execution of the different computing steps.

Must

P1-8 ML inference Simulation code requires access to the ML trained model. May

P1-9
Hyper Reduced Model
Deployment

Once the hyper reduced model is computed it may be deployed in a
computing infrastructure,(such as a Cloud) to be accessible and reusable
by final users. This requires to deployment the model together with
software and data needed to run a complete hyper-reduced model from
scratch.

May

Table 2. Summary of requirements from Pillar II: Dynamic and adaptive workflows for climate modelling.

ID Name Description Priority

P2-1 Execution robustness
Management of fault tolerance during the workflow execution including
checkpoints or retries. For example, during a large execution if a node
fails, the workflow must be able to recover and continue to the end.

Should

P2-2 Portability
Workflow components should be portable to various types of HPC
infrastructures.

Should

P2-3
Integrated workflow
management

Requires the management of task dependencies, execution of parallel
simulations on different HPC infrastructures, management of batch jobs
(submission, monitoring, cancellation), management of conditional paths
in a transparent way.

Must

P2-4

Integration with long-
term
archive/repository
storage

Results may be stored in long-term storage for archiving purposes, second
use (e.g., downstream services) and/or to satisfy FAIRness policies.)

May

P2-5 Workflow adaptability
Capability to easily manage, cancel, replace and add components
invocations in the workflow, for instance allowing the execution starting
from the n-th step.

Should

P2-6
Access to intermediate
in-memory results

The workflow should be able to retrieve data/intermediate outputs of the
running processes directly from memory.

Must

 8

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

P2-7
AI integration for
ensemble member
pruning

Support for applying Machine Learning techniques on intermediate data
of running members to compute the members that will be discarded at a
given step of the simulation.

Should

P2-8 ML/DL capabilities
Requires the support for training and inference of Neural Network models
for example for Tropical Cyclone detection.

Must

P2-9 DA capabilities
Support for descriptive analytics (e.g., statistical analysis) exploiting fast
in-memory analysis.

Must

P2-10
High Performance
Computing support

Climate models have to be executed on computing infrastructures
capable of providing a large amount of processing and memory resources.

Must

P2-11 Multi-member analysis
Support for concurrent execution of sub-workflows starting from different
inputs (configurable) and comparison of the sub-workflows results.

Must

Table 3.Summary of requirements from Pillar III: Urgent Computing for natural hazards

ID Name Description Priority

P3-1
Urgent computing
access

Priority access to HPC computational resources. Must

P3-2 Data accessibility

Some data required in HPC computations is stored in external repositories
and some computational results must be required for post processing in
external services. So, some High-performance data management
mechanism between external repositories and HPC facilities is required
in order make data accessible in the infrastructure required by the
computation

Should

P3-3 Data replication

Redundancy of data is required in different phases of the workflow
execution. Source data must be replicated in different location to assure a
high-availability computation as well as avoiding time consuming data
transfers (e.g. computational meshes). Intermediate data generated by
large computation must be also considered in order to avoid losing data in
case of failures.

Must

P3-4 Execution robustness

Support for the management of fault tolerance during the workflow
execution including checkpoints or retries. For example, during a large
execution if a node fails, the workflow must be able to recover and
continue to the end.

Must

P3-5
Infrastructure
interoperability

Interoperability between computations performed in different
infrastructures used in the Pillar (e.g., HPC clusters and external servers).

Must

P3-6
Portability and
Reusability

Workflow and its components must be portable and reusable to several
infrastructures and users.

May

P3-7 Streaming data source
Management of streaming data sources in real-time from external
agencies or servers

Must

P3-8
Integrated workflow
manager

Support for the management of task dependencies, execution of parallel
simulations on different HPC infrastructures, management of batch jobs
(submission, monitoring), management of conditional paths, and
coordination of microservices invocations

Must

P3-9
Integration with
permanent storage

Support for access to external data repositories (R/W) such as EUDAT
Data Storage services (e.g. B2DROP). Support for final storage in long-
term storage for second use and/or to satisfy FAIRness policies.

Must

P3-10
Inference with
online/offline ML
models

Support to the use of inference from
Online and/or offline trained ML models by Earthquake and Tsunamis
emulators as steps in its workflows.

Must

P3-11 DA integration Predictive and prescriptive data analytics to assist some building blocks in
analysis and decision tasks.

May

P3-12 Workflow malleability Capability to cancel and add new components invocations at run-time. Should

 9

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

Note that some requirements from different pillars have defined similar functionalities such as P2-
1 and P3-4 regarding execution robustness; P2-2 and P3-6 about components portability and
reusability; P1-7, P2-3 and P3-8 about workflow management and orchestration; and P2-4 and P3-
9 regarding integration with permanent storage. From now on, these similar requirements will be
considered a single requirement in order to avoid effort duplication.

3.2. Requirements and Constraints from Components
Another important goal of the project is enabling the portability and reusability of complex
workflows simplifying its deployment and execution. For this reason, the eFlows4HPC software
stack must support the deployment and coordinate the execution of the software components
required by required by the Pillars’ workflows (mainly HPC software and DA/ML frameworks) as
well as the eFlows4HPC software stack components which must also be deployed in the computing
infrastructure to manage the workflow execution and data.

We have studied the deployment and execution processes of this software to identify the
functionalities that the eFlows4HPC platform should support to achieve the mentioned goal. The
following table provides a summary of these functionalities. The first part of the table focuses on
the software deployment aspects. It includes the support for the different deployment models
required by the used software as well as the access to the specific HPC hardware to ensure the
execution will get a similar performance as if it was manually deployed by the user.

Table 4. Requirements from software components

ID Name Description Priority

CMP-1
Access to HPC
specific devices

Workflows developed with eFlows4HPC stack must be able to access the
specific HPC hardware such as High-Performance networks, accelerators or
special CPU vector instructions.

Must

CMP-2
Support optimized
kernels

Workflows developed with eFlows4HPC stack must be able to support the
architecture-optimized kernels and libraries.

Must

CMP-3
Service
deployments

The eFlows4HPC software stack should support the deployment of data bases
and services required by the DA and ML frameworks in auxiliary Cloud and HPC
centers.

Must

CMP-4 Service invocation
Workflows developed with eFlows4HPC stack must support the invocation of
services.

Must

CMP-5
Multi-node
execution support

Workflows developed with eFlows4HPC stack must support the execution of
applications distributed in different computing resources (such as MPI
applications).

Must

CMP-6
Multicore
execution support

Workflows developed with eFlows4HPC stack must support the execution of
applications with multi-threaded/multi-process using several cores.

Must

3.3. Constraints from HPC Centers
The last source of requirements is provided by HPC centres. Supercomputers are complex
infrastructures shared by different users at the same time. System administrators have to preserve
the security of the data processed while keeping the performance of the whole system. For this
reason, supercomputers have several constraints in terms of accessibility and usability which have
to be taken into consideration when producing software or services using these systems. Not
fulfilling these constraints can prevent the adoption of a certain technology in these computing
environments.

 10

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

To gather these constraints, we have conducted a survey with different HPC centres. We have
prepared a questionnaire (available in Appendix B) with questions related to the main objectives
of the eFlows4HPC platform including access and security aspects, available services, software
management tools, and execution restrictions. In the first phase of the project, this questionnaire
has been sent to HPC system administrators which are involved in the project or used by the Pillars
to get feedback and identify common constraints and produce a first set of requirements for the
eFlows4HPC architecture. In the second phase, we plan to extend this questionnaire and to include
other HPC sites in PRACE and EuroHPC.

Table 5. Summary of HPC sites survey

Site BSC CMCC FZJ PSNC AWI DKRZ

Access &
Security

Access SSH SSH(VPN) SSH SSH/GSISSH SSH SSH

Identity SSH Keys
VPN Cert /
SSH Keys

SSH Keys
SSH Keys,
x509(PRACE)

SSHkeys SSHkeys

UNICORE Testing No Yes No No No

In Conn. SSH Only VPN SSH
SSH, GSISSH,
ARC

Only from
AWI

On request

Out Conn. Not Allowed Allowed No SSH
ssh, gsissh,
arc, http, ftp

Allowed On request

Cluster Nodes
Restrictions

Login Restricted No MPI Restricted Restricted Restricted Restricted

Service Not Allowed Yes Not Allowed Yes No On request

Compute No restrictions
No
restrictions

No
restrictions

No
restrictions

No
restrictions

No
restrictions

Queue System
Shared disk

Queue
system

Slurm/LSF LSF Slurm Slurm Slurm Slurm

Shared disk GPFS GPFS
GPFS,
HPST(BB)

cNFS(Home),
Lustre

BeeGFS Lustre

Software
Management

Modules Yes Yes Yes Yes Yes Yes

Installation
tools

Conda (EB and
Spack testing)

Conda Easy-build Conda
Not
provided

Conda
Spack

Containers Singularity Singularity Singularity Singularity Singularity Singularity

Data
Infrastructure

Data
Interfaces

SCP
GridFTP

SCP
FTP, GridFTP
HTTP,
openDAP

SCP
SFTP
UFTP

SCP SCP
SCP
GridFTP
Swift/S3

Storage
Levels

(NVMe), SSD,
GPFS
HSM:GPFS/Tape

GPFS
Archive

HPST
GPFS
HSM

cNFS
Lustre (no
specific clean
up after job)

/dev/shm,
SSD
BeeGFS,
Tape

Lustre (HDD,
NVMe)
HSM

Table 5 provides a summary of the results obtained in this survey, where we can see that in some
aspects, the answers are quite dispersed but in others we can see commonalities. The main
findings of the survey are:

- We cannot rely on services which must persist between executions or require external
connectivity. Most clusters either do not provide nodes suitable to install them in a user
level or it could have connectivity or execution restrictions.

- SSH and SCP is the common remote shell and transfer protocol supported by all the systems

 11

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

- For software management, all systems use Modules for managing the environment of the
installed software, and for containers, Singularity is supported by all the systems.

- All systems have a shared file system, however other types of storage and its usage varies
depending on the site.

- Slurm is the most extended queue system but not the only one. Implementing tools
supporting this system will cover a considerable number of sites. However, the queue
system is the key component in an HPC site, so they are going to adopt the eFlows4HPC
stack if it is not supported it cannot be extended to support it.

Table 6. Requirements from HPC sites

ID Name Description Priority

HPC-1
HPC cluster access
support

The interactions between eFlows4HPC software stack and the HPC systems
must at least support the SSH protocol

Must

HPC-2
HPC data transfers
support

Transfers to/from HPC clusters must support at least the SCP protocol Must

HPC-3
Singularity container
support

The usage of containers in the HPC system must be compatible with
singularity containers

Must

HPC-4
Infrastructure service
deployment

The eFlows4HPC software stack cannot rely only on services which require to
be installed with privileged nodes or users in the supercomputing clusters.

Must

HPC-5 Queue system
Supported queue systems must include at least Slurm and must provide
extension mechanisms to provide other queue systems.

Must

4. Architecture
This section provides the details of the designed architecture for achieving the eFlows4HPC project
objectives and the requirements presented in the previous section. It is organized as follows, first
an overview of the architecture is presented followed by a description of the main functionalities
of the architecture components.

4.1. Overview
The eFlows4HPC software stack will be composed of a set of software components, organized in
different functional groups (Figure 1). The first group provides the syntax and programming models
to implement these complex workflows combining typical HPC simulations with HPDA and ML. A
workflow implementation consists of three main parts: a description about how the software
components are deployed in the infrastructure (provided by an extended TOSCA [1]
definition); the functional programming of the parallel workflow (provided by the PyCOMPSs
Programming Model [2]); and data logistics pipelines to describe data movement to ensure the
workflow data are available in the computing infrastructure when required.

The second group consists of a set of services, repositories, catalogues, and registries to facilitate
the accessibility and re-usability of the implemented workflows (Workflow Registry), their core
software components such as HPC libraries and DA/ML frameworks (Software Catalog) and its data
sources and results such as ML models (Data Registry and Model repository).

Finally, the lowest groups provide the functionalities to deploy and execute the workflow based
on the provided workflow description. From one side, this layer provides the components to
orchestrate the deployment and coordinated execution of the workflow components in federated
computing infrastructures. On the data management side, it provides a set of components to

 12

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

manage and simplify the integration of large volumes of data from different sources and locations
with the workflow execution.

Figure 1. eFlows4HPC Software Stack Overview.

4.2. Component Descriptions
Next paragraphs provide the details of the functional groups of the eFlows4HPC software stack
and the description of the components in each group

4.2.1. Workflow Definition

Figure 2. Workflow Definition Overview.

As introduced before, the second group is in charge of providing the syntax and programming
models to implement complex workflows combining typical HPC simulations with HPDA and ML
phases. The workflow definition consists of three parts. At a higher level, an extended version of
the TOSCA standard is used to describe the high level execution lifecycle of the workflow. At a
lower level, the PyCOMPSs programming model that provides a lower level task-based
parallelization, which is used to orchestrate the invocations of the different workflow
computations which can include just a simple task execution or sub-workflows implemented with
different HPC libraries or DA/ML frameworks. Finally, the Data Logistics pipelines define the

 13

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

required data operations to properly execute the workflow. Next paragraphs provide more details
about these models.

4.2.1.1. Extended TOSCA

The higher-level part of eFlows4HPC workflow description will be defined using the TOSCA
standard [1]. A workflow in the eFlows4HPC platform will correspond to a TOSCA application,
designed as an assembly of components, that may be interconnected and that defines standard
operations to manage their execution lifecycle. TOSCA defines two types of workflows.

● Declarative workflows: they are workflows to install, start, stop, uninstall (and run for jobs)
based on the component’s standard operations and the relationships between these
components.

● Imperative workflows: they user-defined workflows that can override declarative
workflows

TOSCA extensions and imperative workflows will be leveraged, to address specific kinds of services
to deploy, such as HPC jobs, or to implement specific aspects addressed in the project like dynamic
workflows or data awareness. To support dynamicity in this part of the eFlows4HPC workflow,
users can define variables in the TOSCA descriptions whose value can be updated by workflow’s
steps allowing the possibility to modify other workflow steps. TOSCA descriptions can also support
Inputs/Outputs, span hybrid/heterogeneous infrastructures and rules based scheduling (Drools-
Like / Cron-Like).

Developers can define the high-level workflows with TOSCA either in plain-YAML or graphically
designed using the Alien4Cloud1 web user interface (UI).

4.2.1.2. PyCOMPSs Programming Model

PyCOMPSs [2] is the Python binding of the COMPSs framework [3] that facilitates the development
of parallel computational workflows for distributed infrastructures. It offers a programming model
based on sequential development - the application is a plain sequential Python script - where the
user annotates the functions to be run as asynchronous parallel tasks with Python decorators. This
decorator also contains a description of the function parameters, such as type and direction, etc.
which is vital for building the dependency graph where tasks are represented as nodes and data
dependencies between tasks as edges.

At execution time, tasks are created for each decorated function invoked from the code and
forwarded to the COMPSs Runtime which handles data dependency analysis, task scheduling and
data transfers. The task creation is performed in an asynchronous way, and once the runtime has
added a given task to the dependency graph, the execution of the main Python code continues,
possibly generating new tasks. With this aim, PyCOMPSs manages future objects: a representative
object is immediately returned to the main program when a task is invoked. A future object
returned by a task can be involved in subsequent asynchronous task calls and PyCOMPSs will
automatically find the corresponding data dependencies without requiring to wait for the actual
result of the task.

PyCOMPSs can be extended to support different tasks and data types. For instance, it is able to
support multi-node and multi-core tasks, which are used to integrate MPI and OpenMP

1 http://alien4cloud.github.io/

http://alien4cloud.github.io/

 14

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

applications as tasks of a workflow just adding a specific @mpi decorator in a function which
represents the execution of an MPI application [4]. Following the same approach, it can be used
to integrate the execution of binaries (@binary) or containerized applications (@container). Users
can also use the @constraint decorator to define resource requirements for a task such as number
of CPUs, GPUs or memory size.

Regarding data types, PyCOMPSs not only supports standard parameters (primitive types, files,
objects and collections or dictionaries of the mentioned types), it also supports the definition of
streams to exchange data between tasks. It allows users to create hybrid workflows combining
data and task flows in the same application [5].

Another important feature of PyCOMPSs is the workflow dynamicity. PyCOMPSs workflows are
created at execution time from a Python code, so it is very easy to program different workflow
branches from previously generated values. However, dynamicity can be also generated by failures
or exceptions. Scientific workflows usually implement hyper-parameter searches in huge spaces
performing loads of simulations with different input parameters. It is very likely that some of these
simulations fail, but they should not imply a failure in the whole workflow. For those simulation
tasks, developers can provide hints to ignore these failures, or to cancel their successors. It is also
possible that a solution is found before finishing all the execution. For this purpose, PyCOMPSs
supports parallel try-except blocks where if a specific exception is raised in one of the tasks of the
block all the remaining tasks will be cancelled [6].

4.2.1.3. Data Logistics Pipelines

Workflows for Data Logistics Service are created in Python as Directed Acyclic Graphs (DAGs) and
called Pipelines. They have some similarities with ETL (Extract, Transform, Load) approaches.
Pipelines include additional metadata describing execution details: frequency, retries, parallelism,
backfill, etc.

The idea is to build the workflows as pure functions, no orthogonal concerns should be included
(invocation/scheduling/input-output locations). Such an approach makes testing of the pipelines
easier. Furthermore, such functions achieve idempotence. In case we have to rerun the pipeline,
the results should be the same, e.g., a measurement series is recreated rather than new
measurements are added. This results in a powerful ability to recreate the data sets in a
reproducible way. If some tasks fail, they can be restarted. In the worst case, the work will be done
twice but the data will not be duplicated.

DAGs are composed of operators and sensors. Sensors are able to detect new data in the sources
whilst the operators are responsible to conduct processing, transformations, and transfers. There
are a number of operators already available in the Data Logistics Service, and the list can be easily
extended.

 15

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

4.2.2. Workflow Accessibility and Reusability

Figure 3. Workflow Accessibility and Reusability Layer.

This Workflow Accessibility and reusability group provides the required functionalities to manage
workflows and their main components in an easily accessible and reusable way. It is composed by
the HPC Workflow as a Service component which provides the main entrypoint for users to simplify
the workflow accessibility, and by different catalogs, registries, and repositories to enable the
reusability of the workflow components. Next paragraphs provide details about the functionality
provided by these components and their baseline technology.

4.2.2.1. HPC Workflow as a Service (HPCWaaS)

The HPC Workflow as a Service provides an API and GUI to manage simple and complex workflows.
It relies on the underlying components Data Catalog, Workflow Registry, Software Catalog and
Model Repository (described in the following sections), to support workflow construction to
respectively:

● specify access to data within workflows,
● re-use, customize, store workflows,
● specify usage of software components within workflows,
● use existing ML models and store resulting models from workflows.

Applications to be managed in the project typically make use of HPC simulation, Data Analytics,
and/or ML. Therefore, corresponding workflows will include any combination of these respective
kinds of processing, or domains.

Workflows to be handled may then be categorized as

 simple workflows of three kinds:

1. Traditional HPC simulation workflows, composed of intensive computation on high
volumes of simulation data, represented by the “FastHPC” module in the figure.

2. Data Analytics workflows, involving Data Analytics software usage, typically used for
data preparation or post simulation processing data analysis, represented by the
“FastDA” module in the figure.

3. Machine Learning workflows, designed to manage ML Models training and inference
(MLOps), handled through the FastML component.

 16

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

 Complex workflows are any combination of these simple workflows. A complex workflow
typically combines Data Analytics workflows (e.g. for pre and post processing), HPC
simulation workflows complemented by ML workflows.

While Complex Workflows, FastHPC and FastDA workflow interfaces will be defined within the
scope of the project, the FastML product API/GUI will be the baseline for ML workflows. Currently
FastML will provide the following features (through a Rest API, CLI, and GUI):

● Model Training Management focused on HPC deployment (including User Management,
permissions, Cluster Resource Monitoring)

● Support of TensorFlow, Keras, PyTorch, scikit-learn, although any other ML/DL framework
can be used as far as its Docker Image is made available

● Model tuning through Hyper Parameter Optimization features (automated GridSearch and
RandomSearch for now)

● Jupyter notebooks integration including “Fairing” which is the ability to launch any code
from a Notebook on an HPC cluster as a job

The HPCWaaS component will be used as the main entry point for workflow developers and users,
whose main usages and interactions are described in Section 4.3.

4.2.2.2. Data Catalog (DC)

The following describes the architecture of eFLows4HPC Data Catalog. The service will provide
information about data sets used in the project. The catalog will store information about their
locations, schemas, and additional metadata.

The Data Catalog is implemented with FastAPI2, a modern Python framework allowing for
flexibility, easy extensibility in the future, and quick deployment. The Data Catalog offers an API
well-document in the (industry-standard) Swagger3 format as well as a web-based GUI.

The primary use case for the Data Catalog is to store information about the data sets which can be
then used by the Data Logistics Service to facilitate the required data movements. Secondly, the
Catalog will improve the visibility of the data sets used and created in the project, enabling possible
reuse and collaboration in spirit of FAIR data principles. To this end, the Data Catalog offers a
possibility to describe the items with a rich set of metadata.

4.2.2.3. Workflow Registry (WR)

As introduced in Section 4.2.1, Workflows will be described at the higher level using the TOSCA
standard [1], they will be managed as TOSCA Topology templates (also named TOSCA Application
templates), as described in Section 4.2.1.1. Using this paradigm, the lifecycle of an application can
be described, from resource allocation, to deployment and execution. Workflow designers will use
this formalism to describe a high-level application workflows which will be linked with the
PyCOMPSs workflows and data logistic pipelines to define the lower level computational and data
workflows. These descriptions will be stored in Workflow Repository, from which descriptions can
be fetched either to deploy and run the corresponding workflow, or to be customized to address
a new use case.

2 https://fastapi.tiangolo.com
3 https://swagger.io

https://fastapi.tiangolo.com/
https://swagger.io/

 17

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

The Ystia suite implements a “TOSCA Application Templates'' repository. Its Github project
proposes a public instance of such a repository4. It will be more appropriate that an instance
dedicated to the eFlows4HPC project will be created. The repository management is implemented
by the Alien4Cloud, component of the Ystia software stack, which provides an API and GUI for this
purpose. The Ystia orchestrator (Yorc), described in Section 4.2.3.1 will then be able to handle the
deployment of components and application templates stored in this repository. Alien4Cloud also
provides a GUI to facilitate the design of TOSCA applications.

4.2.2.4. Software Catalog (SC)

The Software Catalog is in charge of storing the software components descriptions that may be
used within the workflows. It will contain the TOSCA descriptions of the software to be used in
definition of high-level workflow. The stored software description are TOSCA Components that
describe the software component lifecycle, i.e., how they should be provisioned, deployed,
started, stopped, and undeployed on the infrastructures when used in a workflow.

As described in Section 4.2.2.3, the high-level workflow is itself described within a TOSCA
Application template, which is built as a composition of the TOSCA Components stored in this
catalog.

The Software Catalog will be handled in the same TOSCA repository, implemented by the Ystia
suite (and materialized as “Ystia Forge” in Figure 3) as the Workflow Registry. The TOSCA
repository stores both TOSCA Application Templates and TOSCA Components.

4.2.2.5. Model Repository (MR)

The Model Repository shall store, ML models as well as information about the ML lifecycle like
performance metrics and training parameters. Currently MLflow5 is considered the candidate
technology to offer this functionality.

The Model Repository offers the possibility to track the lifecycle progress (MLflow Tracking). The
interaction with this part can be done either directly from the scientific code (in any language),
using its CLI. The tracking allows users to see and compare the different versions of the models
and their performance (also using web-based GUI). MLflow Projects allows to package data science
code and models. This enables sharing of the computation outcomes and reproducibility of the
experiments. The results of tracking as well as the project itself can be registered to make them
available to be viewed by other researchers.

There are currently some first efforts undertaken to integrate the MLflow Tracking into FastML.
The further plans include creation of a central repository where ready models created in the
project will be published for the sake of transparency, reusability, and project visibility. Lastly, to
support everyday scientific work, an on-demand ad-hoc instance of MLflow can be provided.

4 https://github.com/ystia/forge
5 https://mlflow.org

https://mlflow.org/

 18

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

4.2.3. Workflow Deployment and Execution

Figure 4. Workflow Deployment and Execution Layer.

The workflow deployment and execution functionalities in eFlows4HPC are provided by the Yistia
Orchestrator, which manages the deployment and execution lifecycle at a higher-level, the
COMPSs runtime, which provides the lower level execution orchestration, and UNICORE which
provides services for uniform access to the federated computing infrastructure.

4.2.3.1. Ystia Orchestrator (Yorc)

The Ystia orchestrator suite6 will be used for the high-level workflow execution, which consists of
components provisioning and deployment on the available infrastructures (including resource
allocation), applications launching and stopping, and the subsequent undeployment.

Yorc supports application lifecycle management over hybrid infrastructures, it is TOSCA native and
designed for large scale. It is the core orchestrator engine of the Ystia suite, which also includes a
“Forge” for hosting TOSCA components and application templates, and relies on a companion
software, Alien4Cloud, that provides functions to design TOSCA applications and to handle a
catalog of TOSCA components and applications. Alien4Cloud provides a Web interface (as well as
an API) to facilitate application design, deployment and supervision, as well as for handling the
TOSCA catalog.

Yorc supports the concept of “jobs” (through a TOSCA extension), as well as Container based
applications. It supports workflows based on TOSCA imperative workflows (as explained in Section
4.2.1.1).

4.2.3.2. COMPSs Runtime

The COMPSs runtime is the component to transparently manage PyCOMPSs tasks. PyCOMPSs
creates tasks for each decorated function invocation in the user code and forwards them to the
COMPSs Runtime, which asynchronously handles them. Once a task is submitted to the runtime it
analyses the data used by the task detecting data dependencies from previous tasks. Based on
these data dependencies, the available resources and data locations, tasks are scheduled and
executed in the remote resources which can be located in clusters, grids or clouds (IaaS or CaaS
offerings). The execution of tasks is performed in a transparent way for the user, requesting the
required data transfers, spawning the computation according to the task type (binary, MPI,
containerized ,...) in the allocated resources and synchronizing the tasks results when required.

6 https://ystia.github.io/

https://ystia.github.io/

 19

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

The runtime is also in charge of applying the failure reaction policy defined by the user in an
autonomous way, cancelling the required tasks (in case of cancel successors or exceptions raised
in a try-except block) restoring the data coherence (setting default values or removing the
expected generated data) and continue with the application execution [6].

Apart from the mentioned features, the COMPSs runtime can also infer the maximum parallelism
of an application based on the generated task dependency graph. This information can be used to
detect when the application can be accelerated with more resources or it is wasting resources. In
these situations, the COMPSs runtime increases or decreases the resources to make an efficient
use of resources if the computing infrastructure supports it [7].

The COMPSs runtime can be deployed in two modes. It can be deployed as a master-worker
application, where the master node executes the main code and schedules tasks to the workers
nodes which are in charge of executing the tasks. The second deployment mode is a multi-agent
application where each computing node deploys a COMPSs agent which is able to analyze,
schedule and execute tasks and collaborate with other agents to execute applications. It provides
a more flexible runtime which is able to better adapt to nested applications and highly distributed
infrastructures.

4.2.3.3. UNICORE

UNICORE (UNiform Interface to COmputing REsources)7 provides tools and services for building
federated systems, making high-performance computing and data resources accessible in a
seamless and secure way for a wide variety of applications in intranets and the Internet.

UNICORE is an infrastructure-level service, which offers RESTful APIs8 for HPC job submission and
management (on top of a batch scheduler such as Slurm), data access, data movement and
workflows. It is easily integrated with federated AAI solutions and the HPC site’s user/project
management. As an infrastructure service, it is deployed and operated by the HPC site. UNICORE
solves the critical task of user authentication and authorization in a federated environment, and
allows integration of HPC compute and data into web applications, without any compromise in
security.

The UNICORE compute service component offers an abstraction layer over the site’s batch
resource manager (e.g. Slurm), which can be used to create portable jobs. However, also low-level
interaction with the resource manager is possible. This component also provides access to the HPC
site’s file system(s), solving common data management issues such as data transfer and pre/post
job data staging from/to external data sources.

The UNICORE workflow engine provides a REST API for submitting and managing workflows that
can span multiple UNICORE-enabled computational resources. The workflow execution engine and
workflow description (JSON format) offer a wide range of control constructs and other features:
while, repeat and for-each loops, if-else blocks and plain groups are supported, which can be
nested to any depth. Workflow variables can be defined, modified using scripts and used in jobs,
if-else conditions or for loop control. Workflows can be halted at user-defined points and
continued later, allowing to integrate user-made decisions and user modifications of workflow
variables.

7 https://www.unicore.eu
8 UNICORE REST API documentation: https://sourceforge.net/p/unicore/wiki/REST_API

https://www.unicore.eu/
https://sourceforge.net/p/unicore/wiki/REST_API

 20

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

In summary, UNICORE can help solve integration of HPC into federated applications, allows for the
creation of cross-site workflows and provides added value such as site-to-site data movement
(between POSIX filesystems), access to external data or sharing of HPC data sets.

4.2.4. Data Management

Figure 5. Data Management Layer.

Data management features in eFlows4HPC can be split into two kinds of functionalities. From one
side, the orchestration of data operations which is supported by the Data Logistics Service; and
the in-memory/persistent storage management which is managed by Hecuba and dataClay.

4.2.4.1. Data Logistics Service (DLS)

Data Logistics Service provides scientific users with a means to prepare, conduct, and monitor data
movement and transformations. The primary use case is the aggregation of data from distributed
locations, transformation into the required form, and keeping the local copies up-to-date [8].

Data Logistics Service is based on Apache Airflow9. Its main parts are scheduler, metadata store,
executor, and a set of workers. Airflow executes data transformation pipelines (DAGs) defined by
users. As already explained in Section 4.2.1.3, these definitions are just a normal Python code,
lowering the entry barrier. Once a DAG is created it will be passed to execution by the scheduler
(based on pre-defined requirements like execute once or periodically). Executor dissects the DAG
into single tasks and passes them over to available workers. Workers execute the jobs, and store
the information about the execution in the metadata store. The content of the store can be used
to monitor the correctness, and performance of the tasks' execution. The users can view the
information through the GUI.

In the project the Data Logistics Service will be used in the phase of staging workflows to execution,
making sure that the data required for computation are available. Also, the results of the
computation can be moved out of the processing facility, and registered automatically in the Data
Catalog.

4.2.4.2. Persistent Data Management

In this section we present two solutions, Hecuba and dataClay, that aim at facilitating the
utilization of persistent data in applications. Both solutions implement a common API that allows
programmers to manipulate all the data as regular Python objects, regardless if they are persistent
(stored in disk) or volatile (stored in memory). Both solutions can be integrated with PyCOMPSs to
enhance data locality and to optimize the mechanism of passing parameters to tasks. The target

9 https://airflow.apache.org

https://airflow.apache.org/

 21

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

applications of Hecuba are applications that use big amounts of data and can benefit from the
parallel and asynchronous access that offer highly distributed key-value data stores. The target
applications of dataClay are object-oriented applications that aim to avoid data movements by
executing the object methods locally to the data.

4.2.4.2.1. Hecuba

Hecuba is a set of tools that provide programmers with transparent and efficient access to key-
value databases. The current implementation can interact with Apache Cassandra [9], which is a
wide-column store that follows the key-value data model. Hecuba code is organized into two
different layers.

The first layer implements a Python API that allows programmers to access the persistent data as
regular in-memory Python objects. This layer implements, transparently to the programmer, the
data model in the database and keeps the mapping between both data structures: the in-memory
objects defined by the programmer and persistent data. Hecuba also supports the definition of
nested objects. Moreover, Hecuba is fully compatible with the NumPy library [10]. Hecuba
implements the management of NumPy ndarrays storing them in a distributed fashion across the
database nodes, to benefit from the database architecture and to increase the potential
parallelism degree in accessing this data type.

The second layer is implemented in C++ and contains the code to interact with the database
backend. This code implements some optimizations in the access to the database as data
prefetching, data caching and enhancing data locality. This layer defines its own interface which is
used by the Python layer and which can be used by any non-python application to benefit from
the optimizations in the data access.

Hecuba is integrated with PyCOMPSs to enhance data locality and to avoid data serialization when
tasks access persistent objects.

To facilitate the utilization of key-value data stores on an HPC environment, Hecuba comes with a
set of scripts to automate the configuration and deployment of the database, considering the
particularities of queue-based systems. Also, these scripts facilitate the creation of snapshots of
the database and recover them in the following job allocations. The snapshotting mechanism
provides a fast and easy way of persisting data between executions without requiring a global and
shared database service in the HPC installations.

4.2.4.2.2. dataClay

dataClay [11] is a distributed data store that manages data in the form of objects, with their
properties and relationships, enabling the representation of complex data structures (matrixes,
lists, graphs, …). These data structures are directly stored in a persistent device (Non-volatile
memory, SSD …) without the need of any transformations. The physical location and format of
persistent data is transparent to the application developer.

The objects stored in dataClay also include the methods that enable their manipulation (retrieve
or update the data they contain, or perform arbitrary computation on them). In this way, data
locality is exploited as data does not need to be transferred to the application to be processed, but
only the results of the methods defined.

The architecture of dataClay consists of a Logic Module, which is the main authority for metadata,
such as the structure and methods of each object type, or the locations of objects in the different
Backends. Each backend stores a set of objects and is also in charge of executing the methods

 22

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

associated with them. Objects are instantiated in memory in the backends, ready to be used and
thus avoiding disk accesses during execution in order to improve performance.

dataClay is integrated with the PyCOMPSs runtime, providing the appropriate interface to allow
PyCOMPSs to get the locations of objects and create replicas (for read-only tasks) or versions (for
read-write tasks), so that it can schedule the execution of tasks in the most appropriate location.

4.2.5. HPDA/ML Frameworks

One of the main reusable components of complex workflows are the HPDA and ML frameworks.
They provide toolkits to easily program and efficiently execute DA algorithms or ML training and
inferences. Therefore, every workflow running some of these codes will require to deploy and
invoke these frameworks. Next paragraphs provide the description of the frameworks we plan to
use during the project.

4.2.5.1. Ophidia

The Ophidia HPDA framework represents an open source solution, developed by CMCC, targeting
the challenges related to management and analysis of scientific multi-dimensional data by joining
HPC paradigms and Big Data approaches [12][13]. The framework provides in-memory, parallel,
server-side data analysis and I/O and an internal storage model, based on the datacube abstraction
inherited from the Online Analytical Processing (OLAP) systems, and a hierarchical organization to
partition and distribute large amounts of multi-dimensional scientific data.

The framework is primarily used in the climate science domain, although it has also been
successfully exploited in other domains (e.g., astronomy, seismology, and smart cities) thanks to
its flexible architectural design and storage model.

Ophidia aims to provide a full software stack for data analysis at scale. The Ophidia Server
represents the framework front-end component exposing multiple interfaces, such as SOAP or
OGC-WPS. The server manages the interactions with the client-side and supports multiple
execution modes ranging from interactive analysis to batch processing and workflows of analytics
operators. Interactions with the server can be triggered through the Ophidia Terminal, a Command
Line Interface, as well as the PyOphidia module, the Ophidia Python bindings.

In terms of data management and analysis features, the framework supports around 50 operators
for both sequential metadata management and parallel datacube processing, including for
example data subsetting, aggregation, comparison and import/export for domain specific data
formats (e.g., NetCDF).

This second group of operators can be applied in parallel, exploiting a hybrid MPI+X approach, on
the datacube fragments (i.e., chunks of data) distributed over the in-memory Ophidia storage
layer. Each fragment is organized as a collection of multi-dimensional binary arrays. A wide set of
low-level libraries implemented as User Defined Functions (UDF) and called Ophidia Primitives are
provided to support the management and parallel processing of n-dimensional arrays.

4.2.5.2. Parallel Social Data Analytics (ParSoDA)

Parallel Social Data Analytics (ParSoDA) is a framework useful for parallel processing and analysis
of social on top of a given parallel runtime environment [14]. Currently, ParSoDA is implemented
on top of three environments: Hadoop, Spark, and PyCOMPSs. This means ParSoDA is currently
available as a library for Java and Python.

 23

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

A ParSoDA application is structured as a workflow that can be composed of the following stages:

● Data Acquisition: data are collected from one or more social media sources or data sets
and converted into a common format, which is easily readable by the next stages;

● Data Filtering: data items are filtered by a chain of Boolean predicates which check some
conditions that make the data eligible for next processing stages;

● Data Mapping: all the filtered data are modified according to a cascade of functions, in
such a way more refined data are obtained from the filtered ones;

● Data Partitioning: data are partitioned using a group key; all items with the same group
key are sorted according to a sort key and stored into shards; this stage is useful for
optimizing data locality on the underlying runtime environment, because all the elements
of a shard are sent to a node, which will compute the remaining stages on them;

● Data Reduction: all the elements with the same group key are reduced or aggregated into
a single final item or data structure that is associated to the same group key;

● Data Analysis: the output data from the reduction stage are analyzed in order to extract
or mine the target patterns;

● Data Visualization: finally, the results of the analysis are visualized in different graphical
formats.

ParSoDA simplifies the development of data analysis applications by providing their deployment
on the different nodes of a distributed computing system. The framework also exposes some built-
in functions for all the different stages. For example, ParSoDA provides some predefined crawling
function useful for collecting data from different sources during the Data Acquisition stage.
Moreover, the set of functions can be enriched and a developer can create its own functions for a
specific application.

4.2.5.3. Data Mining Cloud Framework (DMCF)

The Data Mining Cloud Framework (DMCF) [15] is a service-oriented distributed software
framework that aims to effectively execute complex workflows for data analysis applications on
cloud systems. In particular, DMCF has been designed to exploit data-driven parallelism and it uses
in-memory distributed storage of data in order to maximize data locality and reduce read/write
latency to secondary storage. Moreover, DMCF allows for the creation of workflow applications
directly through a programming interface that defines two alternative programming languages for
workflow programming: VL4Cloud that is a visual language used for graphic development of
applications, and JS4Cloud, a textual language based on JavaScript. Thanks to the adoption of these
languages, DMCF simplifies the development of applications, requiring a low level of programming
skills.

The DMCF runtime enables the parallel execution of service-oriented data analysis workflows on
multiple Cloud machines, so as to improve performance and ensure scalability of applications. To
this end, the runtime implements data-driven task parallelism that automatically spawns ready-
to-run workflow tasks to the Cloud resources, considering dependencies among tasks and current
availability of data to be processed. Parallelism is effectively supported by the data and tool array
formalisms where the array cardinality automatically determines the parallelism degree at
runtime.

DMCF is implemented on the Microsoft Azure cloud platform, and it also includes a data-aware
scheduler that uses Hercules [16] in order to exploit in-memory storage of temporary data.
Hercules is a software component which aims to reduce access latency to/from secondary storage,
by implementing a RAM disk on each node of the system. The data-aware scheduler of DMCF is

 24

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

based on two task queues: a global waiting queue, in which every task is stored into before it is
polled by a compute node of the system for execution; a local queue for each compute node where
locally activated tasks are stored into. The global queue is useful to protect task metadata from
node failures, because it is distributed among the cloud platform, so if a virtual node fails the global
queue can be accessed anyway. Locally activated tasks are these polled by a node and prepared
to be executed on it. Each node has at least a thread which polls tasks from the local queue,
executes them and updates their metadata. In particular, the scheduler aims to execute the task
whose parents are terminated and for which the current node is the best one with respect to data
allocation.

The DMCF allows a user for storing input and output files of the workflows into the native storage
of Azure, where the user can access them, while speeding up the execution performance by using
the Hercules in-memory storage for temporary files that are created and re-used on the compute
nodes during the execution

4.2.5.4. Dislib

The Distributed Computing Library (dislib) [17] is a distributed machine learning library written in
Python that enables large-scale data analytics on HPC infrastructures. Inspired by scikit-learn, dislib
provides an estimator-based interface that improves productivity by making models easy to use
and interchangeable. This interface also makes programming with dislib very easy to scientists
already familiar with scikit-learn. Furthermore, dislib provides a distributed data structure that can
be operated as a regular Python object, hiding the underlying distribution details to the final user.
The combination of this data structure and the estimator-based interface makes dislib a
distributed version of scikit-learn, where communications, data transfers, and parallelism are
automatically handled behind the scene.

Dislib is built on top of PyCOMPSs, offering good scalability and performance in distributed
infrastructures, including clusters, Clouds, and supercomputers. Since PyCOMPSs automatically
manages the infrastructure and the distribution of the computation, dislib applications can run in
multiple platforms without changing the source code, and without having to worry about platform
specific details, such as IP addresses and storage devices. In addition to this, dislib applications can
also include custom PyCOMPSs tasks to perform data pre-processing or post-processing in parallel,
or to combine computational workloads with data analytics.

In addition to data management methods, dislib provides algorithms for clustering, classification,
decomposition, and model-selection for parameter tuning among others. Dislib abstracts
developers from all the parallelization details, and allows them to build large-scale machine
learning workflows in a completely sequential and effortless manner.

The main concepts around dislib are:

● Distributed arrays: The built-in 2-dimensional arrays that can be operated in parallel, and
that are used as the main input for the different algorithms. Distributed arrays store
samples and labels in a distributed way that works as a regular Python object from the user
point of view.

● Data handling: Methods for loading data from files in common formats, such as CSV and
LibSVM.

● Unified interface: scikit-learn inspired interface for the different algorithms (i.e., fit,
predict, etc.). This makes dislib's interface easy to learn for the users already familiar with
scikit-learn, and allows a smooth transition of existing codes from scikit-learn to dislib.

 25

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

Dislib can be easily integrated into any existing PyCOMPSs application, and can run in any
computing platform supported by the COMPSs runtime.

4.2.5.5. Helmholtz Analytics Toolkit (HeAT)

HeAT [18] has been introduced in order to exploit distributed memory architectures as well as GPU
driven computation and make it available through an easy to use NumPy-like interface. HeAT
utilizes PyTorch as a node-local eager execution engine and distributes the workload on arbitrarily
large high-performance computing systems via MPI. It provides both low-level array computations,
as well as assorted higher-level algorithms. With HeAT, it is possible for a NumPy user to take full
advantage of their available resources, significantly lowering the barrier to distributed data
analysis.

HeAT hinges on the concept of the DNDarray, which is an inherently distributed n-dimensional
array akin to NumPy's ndarray. The DNDarray object is a virtual overlay of the disjoint PyTorch
tensors, which store the numerical data on each MPI process. A DNDarray’s data may be
redundantly allocated on each node, or one-dimensionally decomposed into evenly-sized chunks
with a maximum size difference of one element along the decomposition axis. This data
distribution strategy aims to balance the workload between all processes. During computation,
API calls may redistribute data items. However, completed operations automatically restore the
uniform data distribution.

HeAT is used in various application domains, such as Earth system modeling, structural biology,
neuroscience, and aeronautics and aerospace. When compared to similar frameworks, HeAT
achieves speedups of up to two orders of magnitude. It has proven to be significantly faster than
Horovod for training on the ImageNet classification and CitiScapes semantic segmentation tasks
[19].

4.2.5.6. European Distributed Deep Learning library (EDDL)

The European Distributed Deep Learning library (EDDL) is an open source library for Distributed
Deep Learning and Tensor Operations in C++ for CPU, GPU and FPGA. The main goal of EDDL is to
serve as a European Library for training and inference operations over Deep Learning neural
networks. The main properties of the library are listed here:

● EDDL works around the concept of tensors. Tensors can be instantiated and operated with
tensor operations. Current supported operations include tensor manipulations, image
operations, indexing & sorting, linear algebra, logic functions and mathematical functions.

● Tensors can be instantiated and operated transparently on different target hardware
devices, such as CPU, GPU, and FPGA. Tensor operations are abstracted away from the
target hardware and, as such, allows the end user to transparently use different hardware
devices for his/her operations with no prior knowledge.

● With EDDL a neural network with standard layers used in other software packages such as
TensorFlow/Keras can be used. Currently, layer types supported are: Core layers, auxiliary
layers, activation layers, data augmentation and transformation, convolutions, pooling,
normalization, reduction, and recurrent layers (among others). The library is Open Source
and allows adding new kinds of layers, if needed.

● The EDDL library includes import/export functionality mostly working with ONNX formats,
therefore, is able to natively run a generated ONNX model with no additional effort from
other frameworks.

 26

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

● Python version of EDDL is available as a parallel Open Source project.10
● EDDL is being adapted with COMPSs. Distributed training can be defined and run with EDDL

in companion with COMPSs [20].

4.2.5.7. Framework Differentiation

Figure 6. HPDA/ML framework differentiation by functionality.

Figure 6 summarizes the features offered by the different DA and ML frameworks. Ophidia and
ParSoDA focus on providing data analysis features, in particular Ophidia provides OLAP analytics
operations and ParSoDA provides a set of data transformations (partitioning, mapping, merging,
etc) and visualization functions. On the other hand, dislib, HeAT and EDDL are providing different
algorithms for machine learning model training and inference. In particular, dislib and HeAT are
targeting machine learning methods and HeAT and EDDL also target deep learning with different
types of neural networks. In the middle, we have DMCF which provides some data mining and
machine learning algorithms.

Figure 7. HPDA/ML Framework differentiation by target parallelism and platform.

Apart from the functional classification, we can also differentiate the frameworks by the target
parallelization platform as depicted in Figure 7. For instance, EDDL is targeting the parallelism
inside a node such as multi-core CPUs and accelerators (GPUs, FPGAs, ...), the rest of frameworks
are focused on multi-node parallelization. In this part, we can differentiate three types of
frameworks according to the target environments. On one hand, DMCF relies on cloud services for
executing the algorithms, so it is currently targeting just cloud environments. On the other hand,
Ophidia and HeAT rely on MPI for multi-node parallelism so their algorithms can benefit from high-
performance networks in HPC clusters. Then, ParSoDA and dislib rely on infrastructure agnostic
technologies so their algorithms can work in both environments. Note that this classification is

10 https://github.com/deephealthproject/pyeddl

https://github.com/deephealthproject/pyeddl

 27

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

done based on the main targets of the frameworks. However, due to the background libraries or
the combinations with other tools they can support more complex environments and workflows.
For instance, HeAT relies on PyTorch which allows to operate with GPUs; EDDL can be combined
with dislib and PyCOMPSs for supporting distributed and federated training; and Ophidia, ParSoDa,
dislib and EDDL operations can be decomposed in PyCOMPSs tasks creating integrated DA/ML
workflows.

4.3. Usage and Component Interactions
One of the main current barriers for the adoption of HPC is the complexity of deploying and
executing the workflows in federated HPC environments. Usually, users are required to perform
software installations in complex infrastructures which are beyond their technical skills. Therefore,
having the workflows ready for execution in a supercomputer could take large amounts of time
and human resources. If it needs to be replicated to several clusters, the required time and
resources will increase. To widen the access to HPC to newcomers, and, in general, to simplify the
deployment and execution of complex workflows in HPC systems, eFlows4HPC proposes a
mechanism to offer HPC Workflows as a Service (HPCWaaS) following a similar concept as the
Function as a Service (FaaS) in the Cloud, but applying it for workflows in federated HPC
environments. The goal is to hide all the HPC deployment and execution complexity from the final
end users of the workflows in such a way that executing workflows only requires to perform a
simple call to a REST API. It will also provide a mechanism to enable the sharing, reuse, and
reproducibility of complex workflows

Figure 8.HPC Workflow as a Service usage cases overview.

Figure 8 shows an overview of how the proposed model works. The HPC Workflow as a Service is
built on top of the eFlows4HPC software stack in order to provide the required functionality to
develop, deploy and execute the complex workflows. Interactions of the users with HPCWaaS is
done in two phases: one for workflow developers and another for workflow user communities. At
development time, workflow developers are in charge of building the workflow using the first two
layers of the eFlows4HPC stack. Once the workflow creation is finished, the workflow is registered
in the HPCWaaS to make it available to the final users. After a successful registration, the workflow

 28

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

developer receives a service endpoint from the HPCWaaS that other users can invoke to use the
developed workflow. It will be automatically deployed and executed in the computing
infrastructure using the rest of eFlows4HPC stack functionalities. Following paragraphs provide
more details about how the different eFlows4HPC components interact to provide the required
functionality in the different usage cases.

4.3.1. Workflow Development

One key part of the challenge mentioned in the introduction, is the implementation of complex
workflows that combine HPC, HPDA, and ML frameworks. eFlows4HPC proposes two mechanisms
to achieve this challenge as depicted in Figure 9. On the one hand, the software stack provides a
set of registries, catalogs and repositories, providing workflow developers with the means to store
the core components (HPC, DA, and ML frameworks) and the required data and ML models in such
a way that they can be easily reused in different workflows and infrastructures. On the other hand,
we propose the definition of a workflow description which enables the combination of the
different workflow components. From this workflow description, the third layer of the eFlows4HPC
software stack can be used to automatically deploy and execute the workflow in the Computing
Infrastructures.

Figure 9. Workflow development usage case.

The proposed workflow description is composed of a combination of an Extended TOSCA syntax,
the PyCOMPSs programming model, and a set of Data Logistics pipelines. In the first part, TOSCA
(an orchestration standard) allows developers to specify which software and services are required;
and how each component should be deployed, configured (linked to each other), started, stopped
and deleted. In the second part, the PyCOMPSs programming model will provide the logic of the
different components of the overall workflow. PyCOMPSs is a task-based programming model that
enables the development of workflows that can be executed in parallel on distributed computing
platforms. It is based on programming sequential Python scripts, offering the programmer the
illusion of a single shared memory and storage space. While the PyCOMPSs task-orchestration
code needs to be written in Python, it supports different types of tasks, such as Python methods,
external binaries, multi-threaded (internally parallelized with alternative programming models
such as OpenMP or pthreads), or multi-node (MPI applications). Thanks to the use of Python as a
programming language, PyCOMPSs naturally integrates well with data analytics and machine
learning libraries, most of them offering a Python interface. Finally, in the last part of the workflow

 29

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

description, the data logistics pipelines allow developers to describe how the workflow data are
acquired, moved and stored during the workflow execution in order to ensure the data is available
in the computing infrastructure when required.

As mentioned before, the workflow description is registered and stored in a workflow registry by
means of the HPCWaaS interface. The result of this registration will produce a service endpoint
which can be later used to invoke the execution of the workflow.

4.3.2. Workflow Deployment and Execution

When users want to execute the registered workflows, they only need to invoke the endpoint
provided at the end of the workflow development phase. As result of this invocation, the last layers
of the eFlows4HPC software stack are used to provide an automatic and holistic workflow
deployment and execution in federated computing HPC infrastructures. This functionality is
provided by the cooperation of several components at different levels. At the highest level (Figure
10), the Ystia Orchestrator (Yorc) is in charge of orchestrating the deployment of the main
workflow components in the computing infrastructures and managing their lifecycle (configuring,
starting services) as described in the TOSCA part in the workflow description. In parallel to the
component deployment, the data logistics part of the description is used by the Data Logistics
Service to set up the required data movements, such as the data stage-in and stage-out, or
periodical transfers to synchronize data produced outside the HPC systems.

Figure 10. Workflow deployment

Once the workflow components and data are deployed, Yorc submits the execution of the main
workflow processes in the computing infrastructure (Figure 11). This step can be supported by
UNICORE, which is in charge of managing the federation of HPC compute and data resources in
order to make them available to users in a secure way. At the lowest level, the COMPSs runtime
will coordinate the invocations of the workflow components implemented with the PyCOMPSs
task-based programming model. As mentioned before, COMPSs supports several task types which

 30

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

can include HPC simulations, DA transformations, etc. The runtime dynamically generates a task-
dependency graph by analyzing the existing data dependencies between the invocations of tasks
defined in the Python code. The task graph encodes the existing parallelism of the workflow, which
can be used to schedule the executions in the resources already deployed by Yorc. Based on this
scheduling the COMPSs runtime can interact with the different HPC, DA and ML runtimes in order
to coordinate the resources usage performed by the different invocations to avoid overlaps and
getting the maximum performance to the available resources. Apart from the dynamic task graph
generation, the COMPSs runtime is also able to react to task failures and exceptions in order to
adapt the workflow behavior accordingly. These functionalities, together with similar features
provided by Yorc at a higher level, offer the possibility of supporting workflows with a very dynamic
behavior, that can change their configuration at execution time upon the occurrence of given
events, such as failures or exceptions.

Figure 11. Workflow execution

Finally, regarding the integration of the data management and computation, the eFlows4HPC stack
also provides two solutions for persistent storage: Hecuba (based on key-value databases) and
dataClay (object-oriented distributed storage). These solutions can be used in PyCOMPSs
applications to store application objects as persisted objects, either in disk or in new memory
devices, such as NVRAM or SSDs, enabling to keep data after the execution of the application. This
changes the paradigm of persistent storage in HPC, dominated by the file system, to other more
flexible approaches. By using persisted objects, application patterns such as producer-consumer,
in-situ visualization or analytics, can be easily implemented.

4.4. Requirement Fulfilment by Architecture Components
The following table provides the relationship between the components of the eFlows4HPC
architecture and the requirements extracted from the different sources. For each requirement we
have identified which components are involved in providing the required functionality.

 31

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

Table 7. Requirements-to-component matrix

Requirement

 Components Involved

H
P

C
W

aa
S

D
C

SC

W
R

M
R

H
P

D
A

 -
Fw

.

M
L

-F
w

.

P
yC

O
M

P
Ss

YO
R

C

U
N

IC
O

R
E

D
LS

H
ec

u
b

a

d
at

aC
la

y

P1-1 Distributed SVD x x

P1-2 Storing of hyper-reduced model x

P1-3 ANN model x x

P1-4 Clustering model x x x

P1-5 Persistent storage x x

P1-6 Restart x x x

P1-8 Workflow orchestration x

P1-9 ML inference x x

P2-1/P3-4 Hyper Reduced Model Deployment x x x x x x

P2-2/P3-6 Portability and reusability x x x x

P1-7/ P2-
3/P3-8

Workflow Orchestration /
Integrated workflow management

x x x x

P2-4/P3-9 Integration with permanent storage x x x x

P2-5 Workflow adaptability x x

P2-6
Access to intermediate in-memory
results

 x x x

P2-7
AI integration for ensemble member
pruning

 x x x x

P2-8 ML/DL capabilities x x

P2-9 DA capabilities x

P2-10 High Performance Computing support x x x

P2-11 Multi-member analysis x x x x x x

P3-1 Urgent computing access x x

P3-2 Data accessibility x

P3-3 Data replication x x x x

P3-5 Infrastructure interoperability x x x x

P3-7 Streaming Data Source x x x x

P3-10 Inference of online/offline ML models x x

P3-11 DA integration x x x x

P3-12 Workflow malleability x x x

CMP-1 Access to HPC specific devices x x x x x

CMP-2 Support optimized kernels x x x x x

 32

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

CMP-3 Service deployments x x

CMP-4 Service Invocation x

CMP-5 Multi-node execution support x x x

CMP-6 Multicore execution support x

HPC-1 HPC Cluster access support x x

HPC-2 HPC Data Transfers support x x

HPC-3 Singularity Container support x x x x x x

HPC-4 Infrastructure Service deployment x x x

HPC-5 Queue System x x x

5. Metrics
To evaluate the improvements introduced by the eFlows4HPC methodology and architecture, we
have defined a set of end-user metrics which have been divided in two parts: common workflow
metrics selected from the technical areas targeted by the project, and pillar specific metrics, which
are focused on measuring the improvements related to the scientific process of each pillar. The
following paragraphs present the common workflow metrics while pillar specific metrics are
presented in deliverables D4.1, D5.1 and D6.1.

The eFlows4HPC project will improve different aspects of the lifecycle of the complex workflows
(development, deployment and execution). To measure these improvements, we have defined a
set of relevant metrics from different areas related to the technical project objectives. Next
paragraphs introduce the considered areas and afterwards Table 8 presents the selected metrics.

 Development & Maintenance: Metrics of this area are intended to measure how difficult
the development of a software and its maintenance is. They are normally measured by
tools to inspect source codes (such as Sonar) providing the lines of code, cyclomatic
complexity or the number of duplicated code blocks. Lines of code provides a general
metric of the effort for programming and maintaining a code: an increment/reduction of
lines of code, implies an increment/reduction of effort to program, understand and modify.
The cyclomatic complexity is a metric to measure how complex a piece of code is, so it is
mainly affecting the maintenance. Finally, the duplicated blocks metric is also affecting the
maintainability because a change in a duplicated code must be done in several places.
Therefore, we consider lines of code metric as the most relevant for development and
maintenance. Due to the project being mainly focused on the workflow development and
the integration of its main components, this metric will be only applied to workflow codes
but not in software used inside the workflow components (simulators, libraries etc.).

 Accessibility & Deployment: Metrics of this area are aimed at measuring the deployment
process of a workflow in terms of how portable or reusable a workflow is, and how long a
developer or an automated process will take to deploy the workflow in a selected
infrastructure.

 Performance: Metrics of this area focus on the quality of a workflow execution. These
quality metrics are normally calculated by measuring the execution time of a workflow in
different conditions such as input data sets or infrastructure configurations to know if the
execution is efficient and scalable. These metrics can be applied to the whole workflow

 33

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

execution, but also to kernels whose optimization will considerably affect the total
workflow performance.

 Data Management: Another important area when executing distributed computing
applications is data management. Metrics of this area are focused on evaluating how
efficient a workflow execution is in terms of data management. These metrics can provide
information about the number of data operations, the size of these operations and
duration of these operation which is crucial to evaluate if the execution is using a proper
data locality

 Reliability: Failures can happen when executing complex workflows in large computing
infrastructures. There are some failure recovery techniques to mitigate these failures (such
as retries, data replication or execution redundancy) which can be implemented by the
user or transparently supported by the workflow manager. Metrics on the reliability area
are proposed to evaluate how tolerant a workflow is to unexpected failures.

 Energy & Cost: Despite most scientific HPC users are not paying for its usage, the
maintenance of HPC infrastructures has a cost, not only in the initial investment or the
system administration but also in the energy consumed during the operation. Metrics
defined in this area measure the energy consumed and the cost associated to a workflow
execution. Some infrastructure monitoring systems are providing accounting information
about the resource usage and energy consumption of the executed jobs. These metrics for
the workflows can be calculated as the aggregated metric for all the jobs executed by a
workflow.

Table 8. Common workflow metrics

Acronym Name Description Area

LoC Lines of Code Number of Lines of code in the workflow implementation.
Development &

Maintenance

DoP Degree of Portability
Percentage of workflow components that can be reused in other
infrastructures and workflows.

Accessibility &
Deployment

DT Deployment Time Time elapsed to deploy the workflow.
Accessibility &
Deployment

ET Execution Time Time elapsed to execute a workflow. Performance

SU Speed-up

Execution time improvement when running with larger resources.
Calculated as:
SU(N) = ET(base)/ET(N)
where ET(base) is the baseline and ET(N) is the execution with N
times larger resources.

Performance

Eff Efficiency

Execution time degradation when running larger problems.
Calculated as:
Eff(N) = ETbase(base) /ETN(N)
where ETbase(base) is the execution of the baseline problem and
infrastructure and ETN(N) is the execution time of N times larger
problem and infrastructure.

Performance

TD Transferred Data
Amount of data transferred (in bytes) by the workflow between
different compute nodes of the computing infrastructure.

Data
Management

DM Data Movements
Number of transfer operations between different compute nodes
of the computing infrastructure.

Data
Management

IOT I/O Time Percentage of Execution time performing I/O operations.
Data

Management

FTC
Fault-tolerant
components

Percentage of workflow components that are fault-tolerant. Reliability

CH Core/Hour
Number hours of a CPU Core consumed by the workflow
execution.

Energy & Cost

EC Energy Consumption
Energy consumed (Wh or Joules) associated with a workflow
execution.

Energy & Cost

 34

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

The metrics defined above and the specific pillar metrics will be using during the evaluation
process of the project. This evaluation will be performed at the end the two implementation
phases defined in the project description. The pillars’ teams supported by the technical teams at
WP1 and WP3 will measure the defined metrics before and after applying an improvement
introduced by the eFlows4HPC methodology or functionality provided by a component of the
software stack. The difference between these metrics measurement will quantify the
improvements done or possible side effects.

6. Conclusions
One of the main steps of a software infrastructure is the definition of its requirements and
architecture. The eFlows4HPC project has conducted during these first months a key activity by
collecting requirements from the Pillars’ workflow applications, from the components that will
compose its software stack and constraints that should be considered from the HPC centers. All
this process has been performed involving key players in multiple work packages (WP1, WP4, WP5
and WP6) and external sources (HPC centers).

This document has presented the first version of the requirements and architecture, and the
definition of a set of metrics for the evaluation of the workflows. A revision of this document will
be performed after phase 1, in months M18 to M20. This second version will take into account the
feedback received from the Pillars’ on the first release of the eFlows4HPC software stack.

 35

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

7. Acronyms and Abbreviations
- AAI - Authentication Authorization Infrastructure

- AI - Artificial Intelligence

- ANN – Artificial Neural Network

- API - Application Programming Interface

- CaaS - Container as a Service

- CLI - Command Line Interface

- CPU - Central Processing Unit

- D - Deliverable

- DA - Data Analytics

- DAG - Directed Acyclic Graph

- DC - Data Catalog

- DL - Deep Learning

- DLS - Data Logistics Service

- DMCF - Data Mining Cloud Framework

- DNN - Dynamic Neural Network

- EDDL - European Distributed Deep Learning library

- ETL - Extract, Transform, Load

- FaaS - Function as a Service

- FAIR - Findable Accessible Interoperable Reusable

- FPGA - Field Programmable Gate Array

- FTP - File Transfer Protocol

- GPU - Graphics Processing Unit

- GUI - Graphical User Interface

- HeAT - Helmholtz Analytics Toolkit

- HPC - High Performance Computing

- HPCWaaS - HPC Workflow as a Service

- HPDA - High-performance Data Analytics

- IaaS - Infrastructure as a Service

- ID - Identifier

- JSON - JavaScript Object Notation

- KPI - Key Performance Indicator

- M - Month

- ML - Machine Learning

- MPI - Message Passing Interface

- MR - Model Repository

- NN - Neural Network

- NVRAM - Non-Volatile Random Access Memory

- OLAP - On-Line Analytical Processing

- ONNX - Open Neural Network Exchange

- ParSoDA - Parallel Social Data Analytics

- POSIX - Portable Operating System Interface

- PRACE - Partnership for Advanced Computing in Europe

 36

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

- REST - Representational State Transfer

- SC - Software Catalog

- SCP - Secure Copy

- SSD - Solid State Disk

- SSH - Secure Shell

- SVD - Singular Vector Decomposition

- TOSCA - Topology and Orchestration Specification for Cloud Applications

- UDF - User Defined Functions

- UI - User Interface

- VPN - Virtual Private Network

- WP - Work Package

- WR - Workflow Registry

 37

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

8. References
[1] OASIS Standard. “Topology and orchestration specification for cloud applications version

1.0”. 2013. On-line: http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
[2] Tejedor, E., et al. "PyCOMPSs: Parallel computational workflows in Python." The

International Journal of High Performance Computing Applications 31.1 (2017): 66-82.
[3] Badia, Rosa M., et al. "Comp superscalar, an interoperable programming framework."

SoftwareX 3 (2015): 32-36.
[4] Elshazly H, Lordan F, Ejarque J, Badia RM. “Performance Meets Programmabilty: Enabling

Native Python MPI Tasks In PyCOMPSs”. In 28th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP) (2020) (pp. 63-66). IEEE.

[5] Ramon-Cortes C, Lordan F, Ejarque J, Badia RM. “A programming model for Hybrid
Workflows: Combining task-based workflows and dataflows all-in-one”. Future Generation
Computer Systems. (2020); 113:281-97.

[6] Ejarque, J., Bertran, M., Álvarez, J., Conejero, J., Badia, R.M. “Managing Failures in Task-
Based Parallel Workflows in Distributed Computing Environments”. In European
Conference on Parallel Processing, (2020) Aug 24 (pp. 411-425). Springer

[7] Lordan, F., et al. "Servicess: An interoperable programming framework for the cloud."
Journal of grid computing 12.1 (2014): 67-91.

[8] Rybicki, J. "Designing a Data Logistics and Model Deployment Service". , The Sixth
International Conference on Big Data, Small Data, Linked Data and Open Data, 2020

[9] Lakshman, A., Malik, P. “Cassandra: a decentralized structured storage system”. ACM
SIGOPS Operating Systems Review. Volume 44, Issue 2,1-92 pages. 2010

[10] Harris, C.R., Millman, K.J., van der Walt, S.J. et al.” Array programming with NumPy”.
Nature 585, 357–362 (2020).

[11] Martí, J., Queralt, A., Gasull,D., Barceló, A., Costa,J.J., Cortes, T. “Dataclay: A distributed
data store for effective inter-player data sharing”. Journal of Systems and Software 131:
129-145 (2017)

[12] S. Fiore, A. D’Anca, C. Palazzo, I. T. Foster, D. N. Williams and G. Aloisio, "Ophidia: Toward
Big Data Analytics for eScience", Proc. Int. Conf. Comput. Sci., pp. 2376-2385, 2013, doi:
10.1016/j.procs.2013.05.409

[13] D. Elia, S. Fiore and G. Aloisio, "Towards HPC and Big Data Analytics Convergence: Design
and Experimental Evaluation of a HPDA Framework for eScience at Scale," in IEEE Access,
vol. 9, pp. 73307-73326, 2021, doi: 10.1109/ACCESS.2021.3079139

[14] L. Belcastro, F. Marozzo, D. Talia, P. Trunfio, "ParSoDA: High-Level Parallel Programming
for Social Data Mining", Social Network Analysis and Mining, vol. 9, n. 1, 2019.

[15] F. Marozzo, D. Talia, P. Trunfio, "A Workflow Management System for Scalable Data
Mining on Clouds". IEEE Transactions On Services Computing, vol. 11, n. 3, pp. 480-492,
2018.

[16] F. Marozzo, F. Rodrigo Duro, J. Garcia Blas, J. Carretero, D. Talia, P. Trunfio, “A Data-Aware
Scheduling for Workflow Execution in Clouds”, Concurrency and Computation: Practice and
Experience, vol. 29, n. 24, Wiley InterScience, 2017.

[17] J. Álvarez Cid-Fuentes, S. Solà, P. Álvarez, A. Castro-Ginard, and R. M. Badia, “dislib: Large
Scale High Performance Machine Learning in Python,” in Proceedings of the 15th
International Conference on eScience, 2019, pp. 96-105

[18] Götz, M.; Coquelin, D.; Debus, C.; Krajsek, K.; Comito, C.; Knechtges, P.; Hagemeier, B.;
Tarnawa, M.; Hanselmann, S.; Siggel, M.; Basermann, A. & Streit, A., HeAT -- a Distributed

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html

 38

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

and GPU-accelerated Tensor Framework for Data Analytics, 2020,
https://arxiv.org/abs/2007.13552

[19] Coquelin, D.; Debus, C.; Götz, M.; von der Lehr, F.; Kahn, J.; Siggel, M. & Streit, A.,
Accelerating Neural Network Training with Distributed Asynchronous and Selective
Optimization (DASO), 2021, https://arxiv.org/abs/2104.05588

[20] Flich, J., et al. "Distributed Training on a Highly Heterogeneous HPC System." International
Conference on Embedded Computer Systems. Springer, Cham, 2020.

https://arxiv.org/abs/2007.13552
https://arxiv.org/abs/2104.05588

 39

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

Appendix A.

Workflows Requirements Template

Workflow overview
 Identify and introduce the main workflow phases/building blocks

Workflow Requirements for eFlows4HPC Software Stack

Building blocks Requirements

Building block/phase 1:

Input/output data:

 Input and output data of the building block

Computational Granularity:

coarse-grain(>secs)/ fine-grain (<1sec)

Specific software/hardware:

HPC kernels or other tools which are mandatory to run the building block

Programming Languages:

 Languages of the APIs or software used in the building block

DA requirement:

Require to do whatever DA algorithm to perform …

ML requirements:

Require to support clustering …

Integration of DA, ML with HPC kernels:

The DA algorithm preprocesses the input of simultation X. The output of simulation X is the
training data for the k-means clustering

Other required functionalities:

Building block/phase 2:

….

Workflow deployment /execution requirements

Deployment restrictions

Locality, Licenses, Data availability

 40

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

Expected execution requirements

(Dynamicity, replication, ..).

E.g.

Before execution BB1 must be deployed and executing during the whole workflow execution.

The workflow starts executing BB1….

Data Requirements

Data flow:

Sources / Intermediate data /Outputs

Persistency requirements:

in –memory/disk

Data types/structure

collections of small items, big items, arrays…

Data creation-consumption pattern

1 to 1, 1 to N, stream…

E.g. (Maybe a graph)

The input of the workflow is … and it is an x-dimensional array of floats… it is normally stored in …
must be copied to the computing location of BB 1

The output of BB1 which is a key, value sets must be used by BB2 and BB3. It is generated every
iteration and can be consumed by BB2 once the data is available.

BB2 consumes BB1 data and generates ...

BB3 requires all data generated BB1 and BB2 to create a model which must be stored in a repository
for re-usage.

 41

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

Appendix B.

HPC System Administration Questionnaire

Background and Goal
The eFlows4HPC projects aims to build a European Stack for managing workflows for HPC. The idea
is to provide a set of tools and services in order to facilitate the development, sharing, deployment
and execution of complex workflow in HPC systems. We have created this questionnaire to gather
what are common practices and main security constraints when accessing HPC sites. This
information will be analyzed by the consortium member to detect the possible barrier for adopting
the proposed eflows4HPC software stack and gathering requirements for the workflow
deployment in supercomputers.

Available Infrastructure and access request
- Supercomputers: (Architecture + Accelerator if apply)

- Access request procedure:

o PRACE access requests (yes/no)

o Other

Access and security
- Access to supercomputers and data transfers possibilities

o SSH/SCP: (Yes/No)

o Unicore:

o Other:

- User identification

o SSH Keys: Yes/No

o Other certificates:

- Firewall policy:

o Available Income connections:

o Available Outcome connections:

- Restrictions on login nodes

o Is it possible to deploy services/deamon in login nodes to access queue system?

o Limits interactive nodes (time, memory, num processes, ...)

- Service nodes

o Do you have service nodes?

o Is it possible to deploy new services on them?

o Are they accessible from outside: Is there any proxy service to access services

deployed in the cluster?

- Connectivity between compute nodes: (Enumerate restrictions if any)

- Connectivity between login nodes to compute nodes:

 42

D1.1 Requiements , Metrics and Architecture Design
Version 1.0

Queue system and Shared disk
- Available Queue system (Slurm, LSF, PBS, Other)

- Remote execution command to spawn processes/command between nodes (srun,

blaunch, ssh,

- Shared disk systems (GPFS, Lustre,…)

- Folder/nodes where Shared disk is mounted (Example: /home in all nodes, /scratch only

compute nodes)

Software Management
- Environment management:

o Modules: (Yes/No)

o Other

- Building tools without root privileges:

o Easy-build: (Yes/No)

o Spack:

o Conda:

o Other:

- Containers support

o Docker:

o Singularity

o Podman:

o Shifter:

o Pcocc:

o Other:

Data Infrastructure (hosting and management)
- Data transfer nodes/services/interfaces (Please enumerate)

- Available data storage levels (NVMe, SSD, HDD, Shared Disk, Archive…):

o Persistence between execution (in storage levels)

o Capacities (BW, size, etc.)

