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1. Executive Summary 
This document presents strategies and methodologies that will be adopted in the eFlows4HPC 
project to select, adapt, integrate and optimize the different technologies that are proposed to be 
used for building the Workflows as a Service management stack, as well as the workflows 
themselves. It results from the studies conducted in three tasks of the WP2: 

 Data analytics, machine learning libraries and workflow system optimizations 

 Deployment optimization through container methodology 

 Storage technologies 

Based on the requirements issued from Pillars use cases, from components to be deployed on 
computing infrastructure, and from HPC (High Performance Computing) Data Centres constraints, 
a set of strategies is derived in order to optimize and facilitate the deployment and execution of 
scientific workflows by the eFlows4HPC platform. 

Regarding libraries usage optimization, the result is to first focus on a specific problem related to 
data partitioning strategy. Workflow execution will be optimized by leveraging parallel execution 
and dynamic resource management. Container technologies will be used for applicative workflows 
management, taking care of containerized components availability and of related usage 
constraints. Strategy for storage is to use alternative solutions to traditional file systems, in order 
to optimize data operations within a distributed execution context; this is done in a per use case 
context. 

Section 2 provides more information about the context and goals of this document, then the study 
is split into three main parts: section 3 about the optimisation strategies related to all libraries and 
runtime to be used for scientific workflows execution; section 4 about deployment optimisation 
through container technologies usage; and section 5 about optimisation strategies regarding 
storage technologies. The conclusion summarizes the results obtained from the previous sections, 
explaining how they will contribute to workflow optimization and have impact on the metrics 
established for the project. 

 

2. Introduction 
The eFlows4HPC project aims to deliver a “workflow as a service” platform that will enable the 
integration of HPC simulation and modelling with big data analytics (DA) and machine learning 
(ML) in scientific and industrial applications. The integration of these different technologies (HPC, 
ML, DA) in a single workflow raises complex issues related to the development, deployment and 
execution steps, and requires a complex lifecycle management. 

The project introduces the HPC Workflow as a Service (HPCWaaS) concept, implemented on top 
of a software stack, the goal of which is to hide the complexity of a HPC/DA/ML Workflow 
execution to end users. The project requirements are issued from three application Pillars with 
high industrial and social relevance: manufacturing, climate and urgent computing for natural 
hazards. 

As explained in deliverable D1.11, the eFlows4HPC software stack is composed of a set of software 
components: 
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 First, a set of repositories, catalogues, and registries contain the components that will be 
used within the workflows. It includes their core software components such as HPC libraries 
and DA/ML frameworks (Software Catalogue), data sources (Data Catalogue), ML models 
(Model Repository), workflows itself (Workflow Registry). 

 Then, some components provide the functionalities to define, deploy and execute 
workflows by themselves; i.e., how the software components that are used within the 
workflows are deployed on the infrastructure, how required data is staged in or out 
through data logistic pipeline setup, how the workflows are executed, both at the higher 
level through a TOSCA based orchestration (YSTIA/Yorc) and at the lower level, through 
distributed tasks execution (PyCOMPSs). These components orchestrate the deployment 
and coordinate execution of the workflow components in federated computing 
infrastructures. 

The combination of all these technologies raises important optimisation issues, both at the DA and 
ML libraries level, at the data management (storage) level, and at the workflow execution level. 

The goal of this document is to gather the results of the studies which have been conducted to 
optimize the usage of DA/ML libraries, of the storage technologies, and of the workflow 
orchestration systems. How the container technologies could facilitate the usage of these 
components has also been addressed. 

One of the goals of the project is to improve the performance and reduce the energy required to 
execute complex workflows. This reduction in energy is tackled by multiple activities in the project. 
By automating the development, deployment, and execution of workflows, besides widening the 
access to HPC systems to existing and new user communities, we will be reducing the cost of using 
such resources. This cost reduction will directly impact the time required from users/developers, 
and indirectly will also imply a more efficient use of the HPC resources and therefore a reduction 
in energy required to operate them.  

The optimization in orchestration that will be tackled in the project, enabling the overlap of 
different types of computations and the use of better resource management, will also benefit the 
energy consumption of the workflows.  

Another contribution of the project to energy efficiency will be provided by the activities in WP3, 
which aim to optimize specific kernels for specialized architectures such as GPS, FPGAs and the 
EPI. 

 

3. Data analytics, machine learning libraries and 
workflow system optimizations 
This section presents the results of task 2.1 of WP2, “Data analytics, machine learning libraries and 
workflow system optimizations”, at this stage of the project. The goal of this task is to develop the 
required optimizations for obtaining a performant, scalable and energy efficient platform. 
Specifically, the optimizations are particularly designed for the different DA components, for ML 
libraries, and for workflow runtimes/orchestrator engines used in the project. 

In general, we deal with an optimization problem whose ultimate goal is to minimize a cost function 
(or equivalently maximize a utility function). Optimization problems are formalized through 
quantitative techniques and mathematical models, characterized by a set of constraints, an 
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objective-function and the unknown decision variables to be determined. The search for solutions 
of an optimization problem is carried out through specific logical-mathematical procedures (i.e., 
optimization algorithms). There is a wide range of real-world problems in several fields that can be 
formalized as optimization problems, such as production planning, investment and portfolio 
management, logistics and transport management, etc. 

Within the project, we focus on the optimization of software components, which have been 
grouped into three main groups: data analytics, machine learning libraries and workflow 
runtimes/orchestrator engines. For each of them, examples of possible optimizations are 
provided.  

 

Data analytics. This group includes all software components that allow data to be processed 
within an end-to-end knowledge discovery process, from raw data to the visual interpretation of 
the extracted patterns. This group includes Ophidia, ParSoda and DMCF that, in different ways and 
on different types of data, allow designers to pre-process data, prepare them for the analysis, 
analyse them using machine learning/data mining algorithms and, finally, visualize the results. 
Possible optimizations in this group for example include the following aspects: 

i. the way in which data is prepared, moved and modified from one phase to another of 
the analysis process; 

ii. how data are partitioned in order to be analysed efficiently, reducing overhead while 
ensuring a good level of parallelism; 

iii. the choice of a suitable set of parameters for configuring the different algorithms, which 
involves a study on how these parameters can affect the quality of the results and the 
execution times; 

iv. the possibility of having new algorithms and tools available within the different 
softwares for coping with specific analyses. 

 

Machine learning libraries. This group includes a series of software libraries that allow to perform 
advanced data analysis through the application of ML techniques. It includes Dislib, EDDL and 
HeAT, a collection of methods and algorithms in the field of ML that can improve automatically 
through experience by leveraging a large set of training data. Some optimizations in this group 
include: 

i. tools to transform input data into a suitable format for the different libraries; 
ii. proper data chunking strategies for analysing data in a parallel and efficient way; 

iii. techniques for hyperparameter-tuning aimed at properly setting the different 
algorithms; 

iv. the implementation of ML algorithms or tuning strategies which are not yet available in 
a library. 

 

Workflow runtimes/orchestrator engines. This last group includes two software frameworks 
(PyCOMPSs and Yorc) used to orchestrate the execution of different workflow computations, 
which can include just a simple task or sub-workflows implemented with different HPC libraries or 
DA/ML frameworks. The possible optimizations in this group refers to the following aspects: 

i. coordination of all operations that are needed to manage the interaction with all the 
software systems and libraries exploited in the workflow; 
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ii. choice of a suitable strategy for data partitioning and storage; 
iii. assignment of the different tasks to computing resources so as to minimize the 

movement of data between nodes; 
iv. optimize workflow orchestration, allowing the simultaneous execution of tasks, in order 

to maximize throughput, improving the exploitation of resources and consequently the 
energy efficiency of the overall execution. 

v. optimization of memory usage, in order to maximize in-memory computation, avoiding, 
at the same time, problems related to memory saturation. 

Traditionally, these phases have been executed as a static pipeline where only one of the phases 
is executed at a time. In each step, a specific runtime is in charge of managing the execution of the 
processes in the available resources. However, nothing prevents that, introducing advanced 
workflow and resource management techniques, all the phases can be dynamically executed at 
the same time allowing overlapping of the different phases, speeding up the overall execution and 
performing better resource management and consequently improving the energy efficiency of the 
overall execution. 

Among all possible optimizations, in the following we focus on two specific problems: data 
partitioning (or data chunking) and workflow orchestration. We firstly introduce the problems 
along with some implications in the context of distributed computation environments. Afterwards, 
we propose solutions referring to specific tools / software present in the project. 

 

3.1 Data partitioning optimization 
Data partitioning refers to splitting a dataset into small and fixed-length units called chunks, in 
order to enable data-parallel processing and storage in distributed systems. There are several 
issues related to data partitioning, mainly related to load balancing and parallelism. 

When distributing a dataset on a set of nodes within a distributed computation environment, the 
choice of the destination node for a given chunk, i.e. the node where that chunk will be stored, is 
often crucial. System load should be balanced over the distributed system nodes to improve 
overall performance, utilization of resources, response time and stability. For this purpose, an 
optimal distribution of the chunks can avoid excessive communication, caused by the migration of 
the different chunks from heavily utilized nodes to underloaded ones. Moreover, the choice of the 
destination node can be guided by its hardware characteristics, which should be in line with what 
is needed for processing the chunk. 

Regarding parallelism, the choice of the size of the chunk can heavily affect the trade-off between 
single node efficiency and parallelism. Specifically, a larger size reduces parallelism (less chunks) 
but makes tasks larger. Although this can lead to an overhead reduction, it must be ensured that 
the size of the chunk does not exceed the memory available on the individual nodes, so as to avoid 
memory saturation errors. On the other hand, a smaller size leads to a finer exploitation of 
parallelism, while introducing larger overhead due to communication and synchronization, which 
can have a negative impact on performance. 

Focusing on this last aspect, we can formally define the choice of the correct chunk size as a fixed-
size chunking problem2. Specifically, given a dataset 𝐷 characterized by 𝑛 rows and 𝑚 columns, we 
must determine the size of the chunk 𝑆 =  (𝑛′, 𝑚′), 𝑛′ ≤ 𝑛, 𝑚′ ≤ 𝑚 which leads to the best 
partitioning of 𝐷 on the distributed system, matching the optimal value for performance in the 
efficiency-parallelism trade-off. 
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3.1.1 A machine-learning approach for chunk size prediction 

The problem of estimating a proper size for data chunks in data-parallel applications is of great 
interest as it can heavily affect system performance and scalability.  

Our solution treats this problem from the point of view of regression. In particular, our approach 
is comprised of the following steps: 

1. Prepare a set of executions to find the optimal chunk size to reduce/optimize the execution 
time. This step is characterized by several degrees of freedom, as different algorithms must 
be taken into account, as well as a wide range of configuration, input data and hardware 
characteristics. In such a vast search space, we need to find an effective exploration 
strategy in order to determine a sub-optimal value for the chunk size. For this purpose, we 
can compare several techniques used for hyperparameter optimization, including grid 
search, randomized search and genetic algorithms. At the end of this step we obtain a 
dataset in which each row represents an execution described by: 

○ Algorithm- and infrastructure-related features, along with dataset characteristics. 

○ The optimal chunk size estimated previously (i.e., the target variable). 

2. Train a regressor to learn the patterns that link execution characteristics and the relative 
chunk size. The output is a regression model able to estimate the optimal chunk size for a 
given task based on its features, input data characteristics and the underlying system 
infrastructure. 

This approach has already been successfully leveraged to improve the in-memory execution of 
data-intensive workflows on parallel machines, showing its effectiveness with Apache Spark used 
as a testbed3. 

 

3.1.2 Use case: Dislib 

The aforementioned technique, especially designed to address the problem of the choice of a 
proper chunk size, can be applied to a wide range of frameworks for distributed data processing. 
In fact, the majority of the state-of-the-art systems, such as Hadoop4, PyCOMPSs5 and Dislib6, 
leverage a data-parallel approach that involves a data partitioning step for distributing the dataset 
across the working nodes. Consequently, the application of the solution described above can lead 
to a performance improvement by optimizing the partitioning process, which in turn reduces 
overhead while ensuring a good level of parallelism and throughput. 

In particular, among the main frameworks and libraries of interest for distributed computing, we 
selected Dislib as a testbed. This is a distributed computing library built on top of PyCOMPSs that 
provides distributed mathematical and machine learning algorithms through an easy-to-use 
interface. It is inspired by scikit-learn and numpy, and comprises various machine learning 
algorithms, such as K-means, DBSCAN, Support vector machines and Random forests. The main 
concepts around Dislib are: 

● Data handling: load data from files in common formats, for example CSV and LibSVM. 

● Unified interface: Dislib provides a scikit-learn inspired interface for the different 
algorithms (i.e., fit, predict, etc.), which makes it easy to adopt, allowing also an easy 
transition of existing code from scikit-learn to Dislib. 
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● Interoperability: Dislib can be easily integrated into any existing PyCOMPSs application, and 
can run in any computing platform supported by PyCOMPSs as, e.g., clouds and clusters. 

● Distributed arrays (ds-array): a built-in 2-dimensional array that can be operated in parallel, 
which is used as the main input for the different algorithms. Distributed arrays are divided 
into blocks that are stored remotely. 

In this framework, the degree of parallelism is controlled by the ds-array’s block-size, which 
defines the number of rows and columns of each block. Therefore, the choice of the optimal block 
size is essential in order to exploit the full potential of Dislib, hence the possibility of effectively 
applying the proposed solution. 

 

3.2 Workflow orchestration optimization 
The execution of complex workflows tackled by the eFlows4HPC project combines the execution 
of HPC simulations together with DA algorithms and ML training and inference. Traditionally, these 
phases have been executed as a static pipeline where only one of these phases is executed at a 
time. In each step, a specific runtime is in charge of managing the execution of the processes with 
the available resources. However, nothing prevents that, via the introduction of advanced 
workflow and resource management techniques, all the phases can be dynamically executed at 
the same time speeding up the overall execution, and attaining better resource management and 
consequently improving the energy efficiency of the overall execution. An example of this fact is 
shown in the execution trace in Figure 1, where the upper side shows an execution by phases and 
the bottom shows an execution overlapping the phases.  

 

 
Figure 1 Comparison of workflow execution by phases (top) and overlapped (bottom) 
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The strategy to optimize the workflow execution aims at using information extracted at runtime 
from the workflow definition in two terms. From one side: orchestrate the execution of the 
different HPC/DA/ML framework runtimes, and from the other, adapt the resources assigned to 
the workflows according to the real application parallelism. 

 

3.2.1 Runtimes Coordination 

When running workflows combining different HPC/DA/ML phases, it is important to control the 
resources used by the different frameworks in order to balance the load across all the available 
resources. Configuring the resources used by the HPC/DA/ML frameworks can be done either by 
a configuration file provided at startup, a management API (Application Programming Interface), 
or by limiting the resources from the OS (Operating System). In eFlows4HPC, this orchestration will 
be transparently done by the COMPSs runtime. Framework executions can be defined as special 
tasks defined in a PyCOMPSs workflow. The COMPSs runtime is able to detect the data 
dependencies between the different executions, inferring which ones can run in parallel. Then, 
they can be scheduled in the available resources and execute and configure the required 
framework according to the allocated resources. 

 

3.2.2 Adaptive Resource Management 

Another important implication of the dynamic execution of the complex workflows is that the 
parallel workload varies during the workflow execution. The static resource management provided 
by traditional job schedulers does not match with this dynamic workload and can produce two 
effects:  

- In the embarrassingly parallel phases, the execution time slows down because the number 
of parallel processes is limited by the requested resources. 

- In the reduction phases, the parallel workload decreases so some resources become idle. 

A better resource management could be performed if we are able to predict the current parallel 
workload of the application; compare it with the current resource capabilities; request more 
resources when the parallel workload is larger than the current resource capabilities; and release 
resources when resources become idle. The COMPSs runtime has the information to infer this 
knowledge. It can use the information to estimate the parallel workload according to the 
computing requirements of all dependency-free tasks (running or pending) and it also knows the 
available resources to execute the workflows. With a simple comparison, it can easily decide when 
to contact the resource manager to request or release resources. 

 

3.2.3 Energy consumption implications  

The techniques to improve the workflow orchestration presented in the previous sections mainly 
target the reduction in time of resources in an idle state. Therefore, they have a direct implication 
on the energy consumption. If we improve the execution time by just doing a better usage of the 
resources, the energy consumption will also be reduced. 

However, other techniques to improve the total execution time are not always translated to 
energy savings. For instance, increasing the parallelism of an application can considerably reduce 
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the execution time, but it is very likely that the energy consumed during the execution is increased. 
Increasing the parallelism of an application is normally achieved by applying a finer grain data 
partition to enable the usage of a larger number of resources. However, it increases the 
communication and management overhead and reduces the parallel efficiency of the application. 
For that reason, it is also important to find an optimal data partition to achieve the desired 
execution time without increasing the energy consumption. 

For example, total execution time can be reduced in neural network training processes. Indeed, 
with some of the NN libraries (e.g., EDDL) the training process of a neural network can be 
distributed over the system resources (e.g., using GPUs). With the data parallelism approach, the 
model is replicated on each GPU and a subset of the training data is used by each GPU. During the 
training process, all GPUs synchronize their models, thus, converging on the same single model. 
The way synchronization is performed and the frequency of synchronization leads to a trade-off 
between training time and accuracy of the model, but can also impact energy consumption. 

 

4. Container based Deployment 
This section presents the results of task 2.2 of WP2, Deployment optimization through container 
methodology, at this stage of the project. The objective of this task is to study and implement the 
way container technologies will be used to speed-up and improve the overall flexibility of the 
deployment process, applied both to the project software stack (HPCWaaS and all related software 
components) and to the applicative workflows. Therefore this is strongly tied to the work 
conducted in task 1.5 of WP1, Widening access to HPC systems: HPC Workflow as a Service 
(HPCWaaS), the goal of which is to provide the HPCWaaS. The HPCWaaS platform will enable the 
deployment and execution of complex workflows by providing the developer with a means to 
define, register, and deploy workflows, and the end user with facilities to deploy and execute such 
registered workflows.  

The rest of this section is divided into four parts: 

1. Review of the requirements to be addressed by the application of these container 
technologies 

2. Container technology to deploy the eFlows4HPC software stack  

3. Container technology used by the eFlows4HPC service (HPCWaaS) to deploy the 
workflows 

4. Container technology usage constraints 

The first part lists the project requirements addressed by task 2.2. 

The second part lists the components of the eFlows4HPC software stack and describes if they can 
be deployed through a container technology. 

The third part presents the eFlows4HPC components in charge of workflows deployment, and how 
they may rely on container technology to deploy workflows in the form of container images. 

Finally, the fourth part of the study describes the constraints related to the usage of container 
technology within the context of the project, both from the Data Centres point of view (security 
issues...) and from the components and pillars point of view (availability of container images, 
container-based components...). 
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4.1. Project and Pillars requirements addressed by Container 
Technology Concerns 
The main requirement regarding the usage of container technologies in the project is to accelerate 
the deployment and enhance the flexibility of the workflows. Among the requirements listed by 
the pillars (see deliverables D4.1, D5.1, D6.1), and more globally at the project level (see 
deliverable D1.1), some should be considered with particular attention. 

 

Table 1: Requirements related to Container Technology usage 

P3-6 Portability  Workflow components must be portable to several infrastructures 

CMP-1 Access to HPC 
specific devices 

Workflows developed with eFlows4HPC stack must be able to access the specific HPC 
hardware such as High Performance networks, accelerators or special CPU vectorial 
instructions. 

CMP-2 Support 
Optimized kernels 

Workflows developed with eFlows4HPC stack must be able to support the 
architecture-optimized kernels and libraries 

CMP-3 Service 
deployments 

The eFlows4HPC software stack should support the deployment of Data Bases and 
Services required by the DA and ML frameworks in auxiliary cloud and HPC centers  

HPC-3 Singularity 
Container support 

The usage of containers in the HPC system must be compatible with singularity 
containers 

 

Using container technology is of course a way to ensure a certain level of portability among distinct 
infrastructures (P3-6), as several Data Centres or Clouds may be considered to deploy a same 
workflow. However, this does not address all portability issues, and special attention should be 
paid to some specificities encountered when executing HPC simulation, ML or DA codes. Actually, 
using containerized code should not prevent from taking into account some specific HPC hardware 
(CMP-1). There are some optimized ML or DA libraries that should be used within the container 
images (CMP-2). 

The eFlows4HPC workflow deployment model is hybrid, in the sense that some steps are deployed 
on HPC clusters for job-like execution, while other steps address the deployment of services (e.g., 
a storage system), both should be considered when applying a container technology (CMP-3). 

Finally, most HPC Centres do not allow Docker technology to be used on the HPC clusters. 
Therefore the alternative container technology Singularity should be supported in these cases 
(HPC-3).  
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4.2. Deploying the eFlows4HPC software stack through 
Container Technologies 
The table below lists all the software components to be used in the project and provides 
information about the availability of a container-based deployment. In case this is not yet 
available, alternative available distributions are provided. The list and description of these 
components can be retrieved from deliverable D1.1 “Requirements, metrics and architecture 
design”1. These components can be categorized in the following types according to their role in 
the workflow lifecycle and the expected deployment:  

● Infrastructure Components: they are services and tools to manage the workflow lifecycle 
but are installed outside of the computing infrastructure 

● Runtime Components, which are components that must be deployed together with the 
workflow in the computing infrastructure 

● Software Components: they are ML/DA frameworks and HPC libraries that are the specific 
software required by the workflows and must be deployed in the computing infrastructure 

 

 

Table 2: Software Components 

Component Description Container-based 
distribution 

Comments 

Infrastructure Components  

Model Repository Model repository based on 
MLFlow 

Yes  

FastML Model Management and 
Training 

Yes (Docker)  

Ystia suite This provides the 
Alien4Cloud (TOSCA GUI) 
Ystia Forge (TOSCA 
repository) and Yorc 
(TOSCA Orchestrator) 

Yes (Docker)  

Data Logistic 
Service 

Based on Apache AirFlow Yes (Docker compose)  

Data Catalog Registry of the data-sets 
involved in the workflow  

Yes (Docker)  

Unicore Federated access to HPC No CentOS Debian packages 
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Runtime Components 

PyCOMPSs 

 

Task based programming 
model for building 
workflows from python 
scripts 

Yes (Docker/Singularity)  

dataClay 

 

Distributed Object Store Yes (Docker/Singularity)  

HECUBA Key-value Data Store Yes (Docker/Singularity)  

DA/ML Frameworks 

Ophidia HPDA In progress.  Currently, RPM or DEB packages are available.  

Potential issue with the MPI 

EDDL Neural Networks Yes (Docker) Potential issue with MPI and GPU parts and 
architecture-optimized libraries (Linear 
Algebra) 

Dislib Distributed Machine 
Learning algorithms 

Yes (Docker) Potential issue with architecture- optimized 
libraries (Linear Algebra) 

HeAT Data Analytics and Machine 
Library  

No.  Pip installer available 

Potential issue with MPI and GPU parts and 
architecture-optimized libraries (Linear 
Algebra) 

ParSoDA Data Analytics Java library Yes (Docker)  

DMCF Data Analysis Workflows N/A Current version is based on MS Azure Cloud 
software. Each element is a MS Azure 
component 

HPC Software 

Kratos Parallel Multiphysics 
simulation software 

No Cmake and pip installer 

Potential issue with MPI parts and 
architecture-optimized libraries (Linear 
Algebra) 
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ParMMG Software for parallel mesh 
adaptation of 3D volume 
meshes 

No Cmake installer 

Salvus Earthquake simulation 
software 

No Potential issue with MPI parts 

Tsunami-HySEA Tsunami simulation 
software 

No Potential issue with MPI and GPU parts 

FESOM2 Finite Element Sea Ice-
Ocean Model 

Yes (Docker)  Cmake installer 

Potential issue with MPI parts 

OpenIFS Numerical Weather 
Prediction Model 

No Potential issue with MPI parts 

OASIS3-MCT Model Coupling toolkit No autotools (configure, make) 

CMCC-CM3 Climate Model NA No portable 

 

This shows that most of the components to be used in the project are or will be available as 
container images. Moreover, for all components to be deployed via TOSCA/Yorc, it would be 
possible to create Docker files to build Docker images to be deployed by the orchestrator. 

This means that the strategy to adopt will be twofold: 

● As most of the HPCWaaS software stack will be available through container images, we 
consider building the stack itself as a container-based distribution, which will facilitate its 
installation and the adoption of the eFlows4HPC framework and 

● As the components provided by eFlows4HPC, to be used within the applicative workflows 
(such as DA libraries, ML frameworks…), will also be available as container images, it should 
be studied how the deployment of workflows through container technologies could be 
facilitated. This is described in more detail in the next section. 

 

4.3. Container technology used by the eFlows4HPC service to 
deploy the workflows 
Workflows are managed within eFlows4HPC at two levels: the higher level is handled by the 
TOSCA-based YSTIA/YORC orchestrator, while the lower level is handled by PyCOMPSs. Regarding 
ML workflows, FastML provides advanced features and APIs to deploy “training” workflows. These 
three aspects of workflow management are addressed in the next subsections. 
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4.3.1. Yorc High Level Workflows Management 

Yorc is a TOSCA-based orchestrator that manages application lifecycle over a hybrid infrastructure. 
It takes care of resource allocation, software provisioning, application start/stop, and undeploying, 
as well as workflow execution. Regarding containers, two features are available today: 

● Deploying Slurm jobs on Singularity 

● Deploying Docker based application 

These capabilities are subject to evolve and/or be complemented according to the eFlows4HPC 
requirements. 

Yorc will be used for the management of high-level workflows of HPCWaaS. This is being defined 
in task T1.5. At the higher level, workflows will be defined using TOSCA, specifying the software 
components to be used and the data flows. This means that Yorc will be used for defining, 
deploying and executing the applicative workflows. 

The strategy will be 

● To use the Yorc capability to launch jobs running in Singularity containers for all the 
workflow components to be executed on an HPC infrastructure 

● To use Yorc capability to deploy Docker-based application for all the workflow components 
to be executed on the Cloud infrastructure 

● In case, for some reason, containers cannot be used, it will still be possible to use Yorc 
ability to deploy non containerized components (e.g., through Ansible…). 

Although this still needs further study to be conducted in task 1.5, applying this strategy will 
facilitate the HPCWaaS workflow implementation, as for example the Software Catalog may be 
implemented through one or several container registries while provisioning a software component 
could be a simple image pull. 

 

4.3.2. PyCOMPSs Low Level Workflows Management 

As previously mentioned, PyCOMPSs is a task-based programming model for programming parallel 
workflows from Python scripts allowing the integration of different software in a single workflow. 
PyCOMPSs already has a certain support for containers. PyCOMPSs is distributed as a docker image 
available in DockerHub7 and it currently provides two modes of execution with containers: 

● Whole PyCOMPSs application deployed as containers8: In this case, the image containing 
the PyCOMPSs runtime is extended with the software used in the workflow, and several 
containers are deployed to run the PyCOMPSs application: one container running the 
master processes; and the other running the worker processes executing the tasks. The 
advantage of this approach is that the overhead of the execution will be similar to that of 
a bare metal execution due to the containers being mainly initiated at the application 
startup. The main drawback of this option is that users need to create an image with all the 
application dependencies. This can be a complicated task depending on the experience of 
the end-user. 

● PyCOMPSs tasks are executed in containers: In this mode, the PyCOMPSs runtime is 
installed on the bare metal and either a Python method or binary execution tasks (and 
potentially also the MPI tasks) can be annotated with @container decorator. Tasks 
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annotated with this decorator are executed in their corresponding container. This 
approach requires less work for the application developers because they can use already 
built container images for each piece of invoked software. In contrast, it requires a previous 
installation of the PyCOMPSs runtime and the overhead of running the containers is 
performed per task invocation. 

To overcome the drawbacks for the aforementioned execution modes, two strategies can be 
followed: 

- For the first mode, we could automate the PyCOMPSs application image using tools such 
as EasyBuild or Spack which can be leveraged to install HPC software inside container 
images. 

- For the second mode, the container task support in PyCOMPSs can be extended to enable 
its execution from a containerized version of PyCOMPSs. In this case, a mechanism to 
access the container engines (singularity/docker) from the PyCOMPSs worker container 
must be designed and implemented.  

- To reduce the execution overhead in this second mode, the deployment of container 
images in the infrastructure can be integrated in the installation workflow defined in the 
TOSCA part. This will increase the time of the installation phase but it will reduce the 
execution phase which is the time experienced by the end-user. 

 

4.3.3. ML Workflows Deployment with FastML 

FastML provides GUI (Graphical User Interface) / CLI (Command Line Interface) / REST API to 
manage ML workflows, in particular for AI (Artificial Intelligence) model training management. For 
this purpose, it currently relies on Docker images holding both the ML framework, the model and 
the training code, to deploy them through the Slurm job scheduler on the HPC infrastructure. Such 
containerized training code can be deployed either through a Docker or through a Singularity 
runtime. 

Today, most of the ML/DL frameworks and models are provided as Container images, and many 
aspects of AI require the power of HPC infrastructure. Therefore, Data Scientists are faced with 
the complexity of both container technology and HPC infrastructure. 

The strategy will be to use FastML for any part of a workflow that involves a ML step, in order to 
take advantage of the availability of ML components as Container images as well as to hide the 
complexity of using container technologies on top of HPC infrastructure to the user 

 

4.4. Container technology usage constraints in HPC 
The HPC parts of eFlows4HPC workflows will be deployed on HPC clusters. Most HPC centres rely 
on Singularity container technology for application deployment and do not enable Docker usage 
for security reasons. Singularity is a container technology comparable to Docker. However, it has 
always been the preferred choice for HPC usage for several reasons, the main ones being: 

● Docker requires superuser privileges at many stages while Singularity uses the running 
user. This is most of the time not compliant with security rules of HPC centres which are 
shared by many users 
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● Docker requires a daemon to handle the container processes, while Singularity does not 
need it 

● As it has mainly been designed and used for HPC, Singularity natively supports HPC 
Interconnects, OpenMPI… There is also an integration of Singularity with the main HPC 
schedulers like Slurm. 

It has to be noticed that Docker images can be used with Singularity, thus opening access to the 
huge number of Docker images available. 

Components like FastML and Yorc rely on container technology for handling job deployment and 
they are currently able to deploy such jobs in Docker images through the Singularity runtime. 

Regarding the usage of containers in an HPC context, several aspects require special attention. 
Images created using the standard distributions available in public registries like Docker hub work 
in supercomputers if they have a compatible ISA (Instruction Set Architecture), such as amd64 or 
x86_64, and the linux kernel. However, depending on the application, the performance achieved 
with these images will not be close to the peak performance of the computer. Extracting good 
performance for HPC simulators within containers on HPC infrastructures requires some features 
enumerated in the following paragraphs. 

● Processor Optimizations: It is common that these standard images are compiled in laptops 
with optimizations performed for common processors. However, if we want to get the full 
benefit of the processor capabilities, the compilation process must target the specific 
architecture optimizations (Intel AVX, ARM AFX64, etc.) provided via the compiler flags.  

● Efficient Networking: A similar issue occurs for MPI. These images are compiled with 
libraries and drivers using a common networking protocol stack (TCP/IP/Ethernet). 
However, MPI is really efficient in HPC when using high-performance networks (such as 
Infiniband or OmniPath) with support for RDMA which considerably reduces the 
networking overhead. To enable this capability from containers, container engines must 
provide access to the specific network devices and their specific software stack (such as 
runtime libraries, drivers or kernel modules). 

● Access to accelerators: Although new computers include some kind of accelerator, the 
software stack required for accessing this technology depends on the vendor and model of 
the accelerator. Images should be created according to the underlying accelerator in order 
to compile applications with the required libraries to manage the execution in that 
accelerator. Moreover, as in the MPI case, the container engine must provide access to the 
GPU devices and its specific software stack (such as runtime libraries, drivers or kernel 
modules). 

● Optimized Parallel Kernels: Most of HPC applications rely on computational kernels (such 
as Linear Algebra operations) which are implemented by specific libraries. Standard OS 
distributions provide precompiled versions of these libraries, which work efficiently for 
sequential execution on small multi-core computers. However, they do not work well for 
large multi-core processors present in current HPC systems. Most HPC processor vendors 
(such as Intel, ARM or AMD) provide versions of these libraries, which are optimized, for 
large multicore processors improving the performance.  

A consequence of all the aforementioned issues is that there is a trade-off between performance 
and portability. Extracting the best performance from a supercomputer requires generating 
images according to the underlying infrastructure. In consequence, this reduces the portability of 
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the container images because devices or processor capabilities available in one supercomputer are 
not available in another. 

The strategy to optimize this trade-off and provide a good performance ensuring a certain 
portability can relies in two solutions: 

1. Library replacement at container engine. Leveraging the Application Binary Interfaces, 
container images can be generated with standard OS distributions including the required 
libraries at the application level. Those libraries that are required to access a specific 
hardware or implement an application kernel can be replaced by their optimized versions 
installed in the host space. This is commonly used to provide access to efficient MPI 
implementations9 and GPU drivers10 11 while keeping a certain image portability. This 
option is a good solution if the application performance is mainly attained via MPI, GPUs 
or an optimized library. However, it still requires having an image for the supercomputer 
ISA architecture.  

2. Image generation at deployment time. A second solution is integrating the image building 
process in the workflow deployment process. Instead of specifying the container image, 
which contains the software, we could include a receipt for building the software in a base 
container image, and define a step in the deployment phase to build the container images 
required by the workflow according to the provided receipts and the features of the target 
supercomputer. There are solutions that partially cover the functionalities required to 
achieve this goal. One option is combining tools to automate the installation of software in 
HPC such as Spack or EasyBuild within the container image build process12. These tools 
facilitate the installation of HPC software taking into account architecture compilation 
optimizations and optimized libraries included in the most frequent HPC software stacks 
(compiler, MPI version, Linear Algebra libraries, etc.). The European Environment for 
Scientific Software Installations13 goes a step further by proposing the combination of 
EasyBuild with the Archspec python library14 to automate architecture optimized 
installation. The archspec library can extract architecture related features from the target 
node and pass them to the EasyBuild configuration in order to install software for a specific 
supercomputer. Despite they have not been designed to create container images, this 
methodology can be easily integrated with container image creation tools such as Buildah15 
or Docker Buildx,16 which are used to facilitate the creation of OCI-compliant container 
images and multi-architecture builds. Information extracted from the target architecture 
could be used to generate the manifest files describing the image creation, replacing typical 
deb or rpm binary package installations by Easybuild or Spack installations with 
architecture optimizations.  

 

5. Storage technologies 
This section presents the results of task 2.3 of WP2, Storage technologies, at this stage of the 
project. The objective of this task is to optimize the storage-related aspects of the software stack, 
by replacing the traditional file systems with alternative storage solutions in order to improve the 
performance of the workflow.  

Three alternative storage technologies, already introduced in D1.11, will be considered as an 
alternative to file-based storage: dataClay17, Hecuba and Ophidia. Each of them will be integrated 
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in the appropriate parts of the Pillars’ workflows in order to improve data access and the overall 
performance of the workflow.  

dataClay is a distributed platform that manages data in the form of objects, enabling seamless 
access and storage of complex and possibly distributed data structures (matrices, lists, graphs, ...). 
The physical location and format of the data is transparent to the application developer. 
Noticeably, the objects stored in dataClay also include the methods that enable their manipulation, 
such as retrieving or updating the data they contain, or performing arbitrary computation on them. 
In this way, data locality is exploited as data does not need to be transferred to the application to 
be processed: instead, part of the processing happens within dataClay, and only the results are 
transmitted to the application, thus notably reducing the amount of data transferred. 

Hecuba is a set of tools that provide programmers with transparent and efficient access to key-
value databases. The current implementation can interact with Apache Cassandra. Hecuba code is 
organized into two different layers that can be used together or independently.  The first layer 
implements a Python API that allows programmers to access the persistent data as regular in-
memory Python objects. The second layer is implemented in C++ and contains the code to interact 
with the database. This code implements some optimizations in the access to the database as data 
prefetching, data caching and data locality enhancement. Hecuba is integrated with PyCOMPSs to 
enhance data locality and to avoid serialization when passing the data to task persistent objects as 
parameters. 

Ophidia represents an HPDA framework for the analysis of large scientific multi-dimensional 
datasets, by joining HPC and Big Data paradigms18. It is worth mentioning that Ophidia provides 
the features to support both data analytics and management, through an internal, in-memory and 
distributed storage model to handle multi-dimensional scientific data (through the datacube 
abstraction). Even though the main focus is on parallel scientific data analytics its integrated 
storage layer represents an important aspect for managing large-scale datasets. Ophidia has been 
mainly used for climate sciences, even though it has also been exploited in other scientific 
domains.   

The approach followed within this task has been to analyse the storage-related requirements of 
the Pillars, and also identify which are the steps that can benefit most from adopting these 
alternative storage solutions. In order to avoid overlapping efforts, after this analysis we have 
chosen the storage solution that best fits each subproblem, according to its characteristics, instead 
of considering different alternatives for the same (part of the) workflow. This analysis, and thus 
the potential optimizations to be applied, may be extended during the project, as we have started 
focusing on those parts of the workflows where the theoretical benefits are more evident. 

As the advantages of applying alternative storage solutions are tightly coupled to the specific 
requirements and computations that the workflows perform, the remainder of this section is 
divided into the different Pillars. For each of them, we explain the requirements that will be 
addressed, extracted from D1.1 (general)1, D4.1 (for Pillar 1)19, D5.1 (for Pillar 2)20, and D6.1 (for 
Pillar 3)21. We also justify which are the storage solutions initially chosen to address these 
requirements, and explain the potential benefits that we aim to obtain with their integration in 
the workflow.  
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5.1. Pillar I: Manufacturing 
As stated in D4.1, the overall goal of Pillar I is to provide an integrated workflow enabling the 
development of Reduced Order Models (ROM) to be leveraged in order to derive Digital Twins for 
manufacturing applications. The underlying objective is to enable the effective usage of large scale 
HPC hardware in speeding up the generation of ROM and to enable the solution of problems larger 
than it was possible prior to the implementation of the new capabilities. 

In the following subsections we will first summarize the requirements that are relevant to possible 
storage optimizations, and then explain the proposed optimizations and how they will be 
addressed in eFlows4HPC. 

 

5.1.1 Requirements related to storage 

Among the set of requirements related to Pillar I (reported in D1.11 and D4.119), the following table 
summarizes those related to storage: 

 

Table 3: Pillar I Requirements related to Storage 

P1-1 Distributed SVD Requires an optimized distributed execution of the randomized Singular 
Value Decomposition (SVD) algorithm to analyze large scale matrices which 
can exceed the memory of a single cluster node 

P1-2 Storing of hyper-
reduced model 

Requires storing and transferring the meshes and the trained ML model 
needed to reconstruct the hyper-reduced model, together with the solver 
executable needed to run it. 

P1-4 Clustering model Clustering algorithms as an option to improve the reduction ratio. Here both 
training data and the output to be used in the inference step need to be 
saved. 

P1-5 Persistent storage Requires persistent storage for data to be consumed between the steps.  

 

Additionally, Table 4 in D4.1 lists a set of data requirements, which define the kind of data 
structures produced/consumed at each step of the workflow. Some of these data structures 
(namely the simulations definitions and the mesh) are the initial inputs of the workflow, and they 
are obtained from files following specific formats, such as JSON, HDF5, or other solver-specific 
formats. These files are read and then mapped to intermediate data structures, in order to support 
the computations that need to be performed. All the intermediate data in the workflow, namely 
the snapshot matrix, the reduced model, and the intermediate matrices for hyper-reduced model, 
is represented in the form of matrices. Finally, the output results of the workflow will be provided 
either in HDF5 or in a native Machine Learning format. 
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5.1.2 Proposed optimizations in eFlows4HPC 

As stated above, important goals of this Pillar are increasing performance in the generation of 
ROM, as well as increasing the size of the problems that can be solved. These goals refer to the 
intermediate building blocks of the workflow (blocks 2 and 3 from Table 1 in D4.1), which are the 
most computationally intensive. Thus, the goal in eFlows4HPC for storage would be to provide a 
more efficient way to deal with the data managed during these computations, in order to optimize 
performance.  

The aim of those blocks is to compute the SVD on large scale matrices, possibly exceeding the 
memory of computing nodes in a cluster. As the SVD algorithm is part of Dislib, which is based on 
PyCOMPSs, using this implementation will provide the required distribution of the algorithm, 
which also implies the distribution of the matrices involved in the calculation. The main data 
structure managed by Dislib is the ds_array, which represents a two dimensional array (a matrix), 
organized into blocks (submatrices) to enable distribution and parallelization of the computation 
by means of PyCOMPSs.  

Given the characteristics of this computation, and the features of the storage solutions considered, 
the storage solution chosen to optimize this computation is dataClay. dataClay is a distributed data 
store able to manage data in the form of objects, which can represent any object-oriented data 
structure. It allows Python applications (or libraries, such as Dislib) to transparently store their 
objects, and it is able to execute arbitrary code associated with them (their methods) without 
taking the data out of the storage platform, in order to exploit data locality and improve 
performance.  

In view of the above, a promising direction to take is to integrate Dislib with dataClay in order to 
optimize the performance of SVD. In particular, the ds_array can be a dataClay object composed 
of blocks (which are also dataClay objects). In this way, the methods associated with these objects 
defined in Dislib, will be transparently executed within dataClay, thus taking advantage of its 
features to improve performance: dataClay holds the objects already instantiated in memory, 
ready to receive execution requests. Then, in addition to reducing data movements, disk accesses 
and data transformations are also minimized, resulting in reduced execution times. This would 
address the requirement P1-1, and also P1-4 if a clustering algorithm, also part of Dislib, is finally 
considered by Pillar I. 

Additionally, the matrices involved in the workflow can be transparently stored, so that they can 
be used in other steps of the workflow (for example from block 2 to block 3), or be reused in other 
executions of the workflow. This occurs without the need of explicitly transforming the matrices 
to a suitable encoding to be written to a file, which should in turn be read and re-constructed by 
the consuming step. As can be seen, this solves another source of inefficiencies, and also addresses 
requirements P1-2, P1-4, and P1-5.  

 

5.2. Pillar II: Climate modelling 
The ultimate goal of WP5, as reported in D5.120, is to exploit the eFlows4HPC architecture and 
software stack to enhance innovation for intelligent and integrated end-to-end HPDA-enabled 
ensemble Earth System Model (ESM) workflows. 
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Usually, an ESM ensemble experiment consists of several members divided in several sequential 
simulation chunks. In addition, inputs and especially outputs of the simulations runs need to be 
further adapted/reduced/summarized in order to: 

1. Allow the execution of the subsequent analyses usually performed by different and 
heterogenous tools or approaches (e.g. cdo, nco, Ophidia, esmval-tool, ML procedures, 
etc.) depending on the nature on the operations to carry out. 

2. Extract summarized information or insights, in general term knowledge, from the very large 
amount of data produced in order to distill relevant information for scientific evaluations 
or decision making purposes. 

In this sense, a performant workflow solution is needed since these types of experiments are very 
resource-consuming in terms of computational and storage requirements; in particular, 
considering the latter as relevant for this document, in the following we start from the storage 
related requirements moving then to propose some optimizations exploiting the storage 
software/technologies foreseen in the context of eFlows4HPC. 

 

5.2.1 Requirements related to storage 

Among the set of requirements related to Pillar II (reported in D1.1 and D5.1), the following ones 
are related to storage: 

 

Table 4: Pillar II Requirements related to Storage 

P2-4 Integration with 
permanent storage  

Results may be maintained in long-term storage for archiving purposes, 
second use (e.g, downstream services) and/or to satisfy FAIRness policies. 

 

P2-6 

Access to intermediate 
in-memory results 

The workflow manager should have the capability to retrieve 
data/intermediate outputs of the current running members of an ensemble 
on execution time directly from memory. 

P2-9 DA capabilities Support for descriptive analytics (e.g., statistical analysis) exploiting fast in-
memory analysis. 

 

Concerning the requirement P2-4, the eFlows4HPC Pillar II implementation will lead to a reduction 
of the unnecessary model outputs, by means of a pruning of some ensemble members that will be 
discarded at run time; in any case, the final archiving of such outputs requires specific and large 
storage hardware appliances (e.g., a tape library) and usually does not affect the workflow 
execution time (e.g., a dedicated procedure could be run at the completion of the simulations to 
copy/move the selected outputs in a long term storage device). Considering this, in the context of 
this deliverable we will focus our attention on other aspects and the technologies selected to 
optimize the Pillar II workflow exploiting Hecuba and the Ophidia framework. 
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5.2.2 Proposed optimizations in eFlows4HPC - Ophidia 

In the context of the Pillar II of the eFlows4HPC project, the Ophidia Framework will provide a new 
methodology for analytics and feature extraction at scale, in particular for multi-model analysis 
and extreme event analysis. 

The following table (D5.1) contains an excerpt of the identified Pillar II macro blocks in which 
Ophidia will play a primary role in order to improve the performances and speed up the execution. 

 

Table 5: Pillar II Building Blocks to be optimized 

Building 
Block 

Name Included actions Input/Output data 
structure 

Description 

2 Pre-processing phase Concatenation of timesteps, 
regridding (if needed), 
variables selection, etc. 

Input: CMIP6 or 
CMCC-CM3 datasets 
(NetCDF) 

Outputs: NetCDF 
files suitable for TC 
detection/tracking or 
Analytics blocks 

Performs a set of 
preliminary steps to 
organize/modify/regrid the 
data accordingly for the 
following substeps. 

Ophidia will be used to 
select and concatenate the 
timeseries from the CMCC-
CM3 outputs. 

4 Multimember/Statistical 
Analysis 

Percentile/threshold based 
extreme events indices 
computation on 
temperature/precipitation 
(e.g. heat waves, …), multi-
model trend analysis, multi-
model intercomparison, etc. 

Input: Pre-processed 
CMCC-CM3 dataset 
(NetCDF format), 
statistical analysis 
from Feature 
Extraction (NetCDF 
format), 
Observational best 
track data 

Output: NetCDF, txt 
files, maps with 
indices/analytics 
results data 

Performs a Multimember 
and statistical analysis 
operations extracting 
aggregated added values 
from the climate simulation 
run or from the Feature 
Extraction phase outputs. In 
addition, performs 
validation with respect to 
observations. 

Ophidia will be used to 
perform computations like: 
Nr of TC per basin, 
categorization of TC, indices 
extraction (es. HWDI – Heat 
Wave Duration Index). We 
have to rely on a baseline 
of ~30 years. 

 

More specifically: 

● Building Block nr 2 consists in the execution of various operations to adapt the outputs of 
the CMCC-CM3 climate model or the CMIP6 datasets and make them suitable for the 
subsequent Tropical Cyclone (TC) detection/tracking or for the extraction of some 
statistical and aggregated indices; 

●  Building Block nr 4 is devoted to the extraction on some extreme events indices related to 
the temperature or precipitation variables as well as the computation on trends or 
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intercomparison between datasets coming from different sources (e.g. TC detection 
computed by a deterministic o ML based approach). 

All these operations are usually performed by means of specific climate data oriented and 
sequential tools (e.g. cdo, nco) or, more recently, of ad hoc python scripts exploiting the NetCDF 
support provided by some software libraries/packages (e.g. xarray). With respect to these, Ophidia 
offers a complete environment and framework specifically tailored to run in HPC infrastructures 
and able to natively exploit data distribution (on different nodes of the cluster) and a parallel 
execution (on multiple cores/threads). In these terms, parallel I/O (to speed-up the 
retrieval/storing of data from/to the underlying storage) and in memory parallel analysis (complex 
operations on multiple computational cores or concurrently on different sets of data), are key 
features to improve the performances of the entire workflow in the Pillar II context. 

In particular, concerning the latter aspect, Ophidia provides a data distribution mechanism that 
allows to span the ingested datasets on different storage devices (usually RAM memory) on 
different cluster nodes. This allows to perform all the required data analytics operations directly 
in memory and in a pipelined or nested way, overcoming the overhead due to the I/O from/to the 
storage disk. In addition, the data distribution allows to perform such operations exploiting 
different processes or threads in a parallel (e.g. MPI) environment so that each task of a single HPC 
job operates on a predefined chunk of data. Finally, it acts as a service more than a stand-alone 
tool: data could be stored in memory for further manipulations/analyses when they are required, 
as in the case of the multimember statistical analysis where a prior computation has to be 
performed to extract the baseline on ~30 years of data. 

 

5.2.3 Proposed optimizations in eFlows4HPC - Hecuba 

Building block 6 of Pillar II (see deliverable D5.1) requires an analysis of the output data of the 
model at runtime to decide which simulations do not add value to the results and thus can be 
pruned. 

The goal is to develop a dynamic data analysis that accesses the output data before the simulation 
ends execution. The combination of Hecuba with PyCOMPSs improves the productivity of the 
programmers by providing an easy and transparent way to exploit the underlying distributed 
systems. Moreover, Hecuba is implemented on top of a database with an indexing mechanism that 
can be used to provide fast access to the data being generated. 

This use case plan is to work on two different models: OpenIFS and FESOM2. We have 
implemented a proof-of-concept prototype to allow OpenIFS to use Hecuba to store the data. 
Preliminary results showed that the simulation can benefit from the asynchronous writing 
interface provided by Hecuba and the underlying highly scalable distributed database. Thus, we 
plan to modify the implementation of both models, OpenIFS and FESOM2, to use Hecuba to store 
the data generated by the simulations run in building block 6 to facilitate simultaneous access from 
the dynamic data analysis tool. 

Building block 7, consists of processing the output of the models to prepare it as input data for the 
data analysis tools, and building block 8 component executes the post-mortem data analysis on 
the output data. Traditionally these tools require the input data in NetCDF format. For this reason, 
we will explore the addition of an interface compatible with NetCDF into Hecuba, to evaluate 
whether it is possible to use it as a storage backend for this use case. 
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5.3. Pillar III: Urgent computing 
As stated in D6.121, the main goal of Pillar III in eFlows4HPC is to improve and optimize workflows 
to provide a rapid response service to natural disasters, focusing on tsunamis and earthquakes. 
The aim is to deliver faster end-to-end runs, with more robust and reliable workflows, as well as 
more usable outcomes for potential end-users. 

Pillar III is divided into two workflows: one focusing on tsunamis, called PTF/FTRT, and another one 
for earthquakes, called UCIS4EQ.  

In the following subsections, we will first summarize the requirements that are relevant to possible 
storage optimizations, and then explain the proposed optimizations and how they will be 
addressed in eFlows4HPC. 

 

5.3.1 Requirements related to storage 

Among the set of requirements related to Pillar III (reported in D1.1 and D6.1), the following table 
summarizes those related to storage, shared by both workflows in the Pillar: 

 

Table 6: Pillar III Requirements related to Storage 

P3-3 Data replication Redundancy of data is required in different phases of the workflow execution. 
Source data must be replicated in different locations to assure a high-
availability computation as well as avoiding time consuming data transfers 
(e.g. computational meshes). Intermediate data generated by large 
computation must be also considered in order to avoid losing data in case of 
failures 

P3-4 Execution 
robustness 

Support for the management of fault tolerance during the workflow execution 
including checkpoints or retries. For example, during a large execution if a 

node fails, the workflow must be able to recover and continue to the end. 

P3-9 Integration with 
permanent storage 

Support for access to external data repositories (R/W) such as EUDAT Data 
Storage services (e.g. B2DROP). Support for final storage in long-term storage 
for second use and/or to satisfy FAIRness policies. 

 

Table 3 in D6.1 summarizes the data requirements for the PTF/FTRT workflow. In this table we can 
observe that most of the data is manipulated in NetCDF format throughout the workflow. NetCDF 
is a file format widely used in earth sciences, optimized for storing and calculating time-series data. 
Thus, NetCDF is not only a file format, but also provides a set of functions to facilitate manipulation 
and perform calculations on the data stored in the files. Hence, the Python applications consuming 
these data do not need to map it to their own data structures in order to compute their outputs, 
but they can directly use NetCDF instead. NetCDF is used in this workflow for intermediate results, 
as well as for providing part of the output. 

Similarly, Table 4 in D6.1 reports the data requirements for the UCIS4EQ workflow. There we can 
observe that diverse data formats, some of them structured and some of them not, are included 
in this workflow to represent and store the different data sets and types of data involved. 
Regarding the structured formats, we can see that HDF5 is considered for a majority of the 
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datasets. Similar to NetCDF, HDF5 is also a file format and an associated set of functions that 
enable the manipulation of the data, and is also widely used in scientific workflows. In this case, it 
is used to store intermediate results within the workflow. 

 

5.3.2 Proposed optimizations in eFlows4HPC 

Due to its capabilities to manage and manipulate NetCDF files using an in-memory approach, as 
mentioned in the previous section, the Ophidia Framework could also be applied in the context of 
the Pillar III of the eFlows4HPC project, specifically, in order to support the PTF/FTRT workflow. 

More in detail, one of the needs of this use case is to manage/analyze a huge amount of data in 
terms of size but also in terms of file number. Considering Figure 3 in D6.1, this is particularly 
highlighted in blocks #3 and #4 where, starting from a large number of files (one for each tsunami 
scenario), some postprocessing operations are applied (#3) before a final merge of all the results 
(#4). 

The current implementation is Python-based and it requires continuous I/O operations from disk 
in order to save and then retrieve the outputs for the final merging phase. 

In this sense, the PTF/FTRT use case in Pillar III could benefit from the Ophidia features concerning 
two fundamental aspects: 

1. The operations in block #3 could be performed in parallel by submitting n Ophidia jobs 
to the HPC scheduler preserving the outputs in memory to allow a fast retrieval for the 
subsequent steps. If there is the need to save these intermediate outputs, the writing on 
files and the subsequent operations can be carried out concurrently. 

2. The operations in block #4 could retrieve the needed data directly from memory avoiding 
unnecessary I/O operations; in addition, the merge phase could be performed by means of 
a parallel Ophidia operation running on multiple cores or threads and addressing many 
bunches of data at a time. 

An alternative storage optimization for this workflow would be to transparently replace files by 
dataClay objects, in order to exploit the in-storage computation capabilities of dataClay. The idea 
would be to provide those objects with a NetCDF interface, and implement NetCDF functions on 
them, so that they can be executed without the need to transfer the data to the application space. 
This would be applied to those steps that are executed within an HPC infrastructure, which 
according to the current definition of the workflow, correspond to blocks #3 to #5. However, this 
optimization will only provide some advantage if the envisioned time spent in data access is very 
high with respect to the time spent in calculations. As some of the blocks are not yet implemented, 
Pillar III is currently estimating this ratio so that a decision on this possible optimization can be 
made. 

Regarding the UCIS4EQ workflow, no clear possibilities of optimization have been identified at the 
moment. In UCIS4EQ data is shared between blocks across different infrastructures. In this 
scenario, data transfers cannot be avoided, and in-memory approaches cannot be exploited to 
improve performance, which are precisely the main benefits of using the alternative storage 
solutions considered in eFlows4HPC. 
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6. Conclusion 
Results from the previous sections will contribute to the design and optimisation of the workflow 
management stack and of the workflows themselves of the Eflow4HPC project. 

Regarding the task of optimizing the usage of Data Analytics and Machine Learning libraries, and 
of the workflow runtimes and orchestration engines, the area of investigation seems huge: Data 
preparation, data transformation, data movement, data partitioning, algorithms (hyper) 
parameters tuning, orchestration (optimizing resource usage and tasks parallelism). 

Therefore, it has been decided to focus for now on two specific problems, data partitioning and 
workflow orchestration. 

For the first problem, data partitioning (or chunking), there are two subproblems: data chunk 
placement and data chunk size. The second one has been taken as an example for an optimisation 
strategy definition. The strategy will be to design a Machine Learning model that will be able to 
estimate the optimal chunk size, and to apply it first with the Dislib distributed data processing 
framework that will be used in the project. Later the results can be transferred to other libraries 
using chunking. 

For the second problem, workflow orchestration, the strategy will be to evaluate and provide some 
means 

● to optimize the parallel execution of workflow execution steps, e.g., by detecting 
dependencies between different executions as well as by coordinating the use of resources 
done by the different runtimes involved in each execution, 

● and to study how a more dynamic resource management could enhance a parallel 
workload execution, e.g., by predicting an application workload. 

This will be studied first focusing on the COMPSs capabilities to achieve such goals. 

Regarding the containerization strategy, the approach has been first to list all eFlows4HPC 
software components and check their availability as part of a containerized distribution; then to 
study how the components in charge of workflows deployment are using container technologies; 
and finally to take into account all constraints related to the usage of container technologies. 

The first phase shows that although most of the components are available through container-
based distribution, special attention should be paid to some of them, either building ad hoc 
container images, or adopting a particular deployment strategy to cope with some specific 
constraints. 

The second phase has described how both components in charge of workflow deployment, Yorc 
at the higher level and PyCOMPSs at the lower level, can build upon container technologies to 
manage workflows deployment. Yorc will be used to both deploy jobs as Singularity Containers on 
HPC systems, and any Docker based application on Cloud. PyCOMPSs applications can be deployed 
as containers and PYCOMPSs itself may execute applicative tasks in containers: the strategy will 
combine both approaches while proposing automation tools for image building and optimizing the 
execution pattern. In addition, it is proposed that FastML, which is a tool for AI model training 
management, will be used for ML steps of workflow deployment, as it facilitates the deployment 
of ML jobs on HPC clusters. 

Finally, constraints due to container technologies usage that may affect the project have been 
highlighted, including restriction of usage on a particular technology (Docker or Singularity), and 



 

28 

 

D2.2 Technology Evaluation, Containerization and Optimization Strategy 
Version 1.0 

potential performance bottlenecks related to target architecture compilation, network, etc. For 
this last point, the strategy will be to pay attention to the image building process in order to 
provide images which are suited for the target infrastructure architecture, either at the container 
engine level, or at deployment time; corresponding methodology and/or automated tools will be 
studied and provided for this purpose. 

Regarding Storage technologies, the strategy is to study alternative storage technologies in order 
to improve workflow execution performance. This is done in the context of each Pillar workflow, 
according to the related requirements. 

For Pillar I, the direction that will be taken is the integration of the Distributed Data Store Dataclay 
with the distributed Computing Library Dislib, which will reduce data movement, disk access, and 
data transformation. 

For Pillar II, it is proposed: 

● on one side to use Ophidia in order to optimize the execution workflow parts related to 
data ingestion, transformation and analysis, thanks to its distributed data storage 
capabilities, 

● and on the other side to use the Hecuba storage system to enable dynamic data analysis 
rendering easy and efficient access to the output data of a model at runtime. 

For Pillar III, two approaches are proposed, using Ophidia to parallelize operations on data to be 
handled in memory, and using Dataclay to benefit from in-storage computation capabilities. 

The strategies elaborated during these studies and described in this document will highly 
contribute to the workflow improvements targeted in the project and will more specifically have 
an impact on the following metrics, extracted from the D1.11 document: 

 

Table 7: Metrics impacted by D2.2 Strategies 

Acronym Name Description D2.2 contribution 

DoP Degree of 
Portability 

Percentage of workflow components that can 
be reused in other infrastructures and 
workflows. 

Container strategy 

DT Deployment 
Time  

Time elapsed to deploy the workflow. Container strategy 

ET Execution Time Time elapsed to execute a workflow. DA/ML/Workflow 
optimisation, Storage 
technologies 

SU Speed-up Execution time improvement when running 
with larger resources. Calculated as: 

SU(N) = ET(base)/ET(N)  

where ET(base) is the baseline and ET(N) is the 
execution with N times larger resources. 

DA/ML/Workflow 
optimisation, Storage 
technologies 



 

29 

 

D2.2 Technology Evaluation, Containerization and Optimization Strategy 
Version 1.0 

Eff Efficiency  Execution time degradation when running 
larger problems. Calculated as: 

Eff(N) = ETbase(base)  /ETN(N) 

where ETbase(base) is the execution of the 

baseline problem and infrastructure and ETN(N) 
is the execution time of N times larger problem 
and infrastructure. 

DA/ML/Workflow 
optimisation, Storage 
technologies 

TD Transferred 
Data 

Amount of data transferred (in bytes) by the 
workflow between different compute nodes of 
the computing infrastructure. 

Storage technologies 

DM Data 
Movements  

Number of transfer operations between 
different compute nodes of the computing 
infrastructure. 

Storage technologies 

IOT I/O Time Percentage of Execution time performing I/O 
operations.  

Storage technologies 

CH Core/Hour Number hours of a CPU Core consumed by the 
workflow execution.  

DA/ML/Workflow 
optimisation 

EC Energy 
Consumption 

Energy consumed (Wh or Joules) associated 
with a workflow execution. 

DA/ML/Workflow 
optimisation 

 

Of course, all these workflow execution performance improvements will also have an impact on 
the Pillar specific metrics which are defined in D4.119, D5.120, D6.121. 

For Pillar I, it will mainly contribute to ROMTime (Time to compute a Reduced Order Model), 
ROMSize (size of the problem that can be reduced), SVDS (Speedup of SVD Extraction) and SVDL 
(Largest possible SVD) metrics. 

For Pillar II, it will contribute to AR (Accuracy of the results) and SYPD (Simulated years per Day) 
metrics. 

For Pillar III, it will mainly contribute to RT (Response Time) metric. 
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7. Acronyms and Abbreviations 
- ABI - Application Binary Interface 

- AI - Artificial Intelligence 

- API – Application Programming Interface 

- CA – Consortium Agreement 

- CLI- Command Line Interface 

- D – deliverable 

- DA - Data Analytics 

- DL – Deep Learning 

- DoA – Description of Action (Annex 1 of the Grant Agreement) 

- EB – Executive Board 

- EC – European Commission 

- GA – General Assembly / Grant Agreement 

- GUI - Graphical User Interface 

- HPC – High Performance Computing 

- HPCWaaS - HPC Workflow as a Service 

- IPR – Intellectual Property Right 

- ISA - Instruction Set Architecture 

- KPI – Key Performance Indicator 

- M – Month 

- ML – Machine Learning 

- MS – Milestones 

- OS – Operating System 

- PM – Person month / Project manager 

- RDMA - Remote Direct Memory Access 

- TCP - Transport Control Protocol 

- WP – Work Package 

- WPL – Work Package Leader 
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