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1. Executive Summary 
This deliverable identifies potential bottlenecks for the Applications (Pillars) targeted in the 
eFlows4HPC project. The actual objective of this effort is to accelerate the execution of the 
corresponding workflows by developing high performance realizations of selected numerical 
kernels as well as storage and communication alternatives to tackle the identified bottlenecks. The 
focus of the work in WP3 is on the benefits that new architectures (in the form of communication 
and storage technologies and/or heterogeneous architectures) may bring to the acceleration of 
key components of the workflows and, in consequence, the mitigation of the bottlenecks. 

Several meetings and working sessions have been held with the Pillar partners. In addition, 
collected reports, some of them POP CoE audits, for specific frameworks/models used within the 
workflows have been obtained and carefully analysed. From all these meetings and reports, and 
from the Workflow pillar descriptions (Deliverables D4.1, D4.2, D5.1, D5.2, D6.1, and D6.2), we 
have structured all information and compiled this deliverable. 

In addition to the identification of potential bottlenecks, we also provide some hints on the 
optimization opportunities to alleviate these bottlenecks. This is done from the perspective of 
using the additional architectures targeted in the project, namely GPUs (graphics processing units), 
FPGAs (field programmable gate arrays) and EPI (European Processor Initiative) as well storage and 
interconnect technologies. 

This report describes the activity performed in T3.1. The report sets up the baseline for the work 
of the remaining tasks of WP3. 

 

2. Introduction 
The different workflow applications, described in WP4, WP5 and WP6 (for Pillars I, II and III, 
respectively), and exercised in the project, present a considerable complexity. In particular, all of 
them are composed of many processes, some of them running in parallel while others are 
executed sequentially. Some processes may even run in the same workflow on different machines 
with distinct configurations. Therefore, searching for bottlenecks in the entire project workflows 
requires careful analyses, together with a deep study on the implications of the three main 
performance components: computation, communication, and storage. 

In order to identify the potential compute-specific bottlenecks in the Pillars, we first define the 
concept of a (computational) kernel. This represents a concrete algorithm that implements a 
specific functionality in a computer system. The same kernel may have different realisations 
depending on the target system where it is actually implemented, for instance a CPU (central 
processing unit), a GPU or even an FPGA. 

Different types of bottlenecks may appear in a workflow. Depending on the type of performance 
component that causes the bottleneck, we can classify these bottlenecks as: 

- Compute-specific 

- Communication-specific 

- Storage-specific 
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For compute-specific bottlenecks, we identify the kernels that produce them as the kernels that 
dominate the compute time of a running workflow application. We expect that improving those 
kernels by targeting new compute-specific resources (e.g., a high-end GPU or an FPGA) reduces 
the execution time and/or the energy consumption of that kernel, and exerts a significant impact 
on the final efficiency of the workflow. Additionally, we may find compute-specific bottlenecks not 
related to a specific kernel but to the whole process. Indeed, hundreds or thousands of simulations 
may be required posing a compute-specific bottleneck per se to the workflow. 

For communication-specific bottlenecks, we identify data transfers between workflow modules as 
indicated in the deliverables describing the workflows (D4.1, D5.1, and D6.1). Those 
communication transfers may be also affected when communication occurs off premise. In that 
case, we need to consider both the communication intensity and the bandwidth of the 
interconnection network. Communication-specific bottlenecks are also identified within an HPC 
(High Performance Computing) system, mainly when running the simulation frameworks of 
models for a specific workflow. MPI communication is the preferred communication protocol 
leveraged by the HPC components for most workflows and we may track communication-specific 
bottlenecks down to specific communication routines in the MPI standard. 

Finally, storage-specific bottlenecks may arise when large amounts of data stored in local disks 
need to be accessed. In those situations, a storage-specific technology (e.g., NVRAM disks) may 
help in reducing the data access time. 

The work carried in Task 3.1 (which is the basis for this deliverable) included many meetings with 
the Pillar partners, with lively discussions on their workflows and current knowledge of the 
potential bottlenecks. The meetings were also complemented with previous (and recent) analysis 
reports provided by the Pillar partners, some of them POP CoE Audits, with accurate bottleneck 
identifications for the specific key components used in the workflows. 

For the identified bottlenecks, during the project execution we expect to work on solutions to 
attenuate and reduce the impact of the bottleneck on the workflow. These solutions come from 
the combination and adoption of alternative technologies that may be used in the project. 

Compute bottlenecks will be labelled through this document as CP.X.Y where X is the Pillar (I, II, or 
III) and Y is the bottleneck number. The same way, communication bottlenecks will be labelled as 
CM.X.Y and storage bottlenecks as ST.X.Y. 

The rest of the document is structured as follows. Sections 3, 4, 5 and 6 are devoted to the three 
project Pillars. For each Pillar, in the corresponding section we first identify the compute-, 
communication- and storage-specific bottlenecks, and then draft possible optimizations that may 
alleviate those bottlenecks in the context of the Pillars. Then, in Section 7 we provide a summary 
of the insights gained from the present study and briefly discuss how the new architectures and 
technologies may be used to help alleviate the identified bottlenecks. Finally, in Section 8 we close 
the report with a summary of the main findings. 

 

3. Pillar I: Reduced Order Models 
The goal of Pillar I is to develop an integrated workflow for the realization of reduced order models 
(ROM), from their inception to their deployment. The workflow general overview is depicted in 
Figure I. This Pillar targets the simulation of complex engineering problems, with high 
computational requirements, by developing a ROM that provides an accurate representation of 
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the original system, with a much lower computational cost, which can be then utilized in 
subsequent stages of the workflow.  

 

 
Figure I. General overview of the ROM workflow. 

 

As described in deliverable D4.1, the workflow for Pillar I consists of 5 “stages”: 

1. Generation of the input data. 

2. Data extraction. 

3. Hyper-reduction. 

4. Validation. 

5. Deployment. 

Deliverable D4.1 identified stages 1 and 2 as those with the highest computational, communication 
and storage demands, with stage 1 dominating the entire cost because of the need of performing 
a large number of (mostly independent) simulations. Stage 2 involves the extraction of data via the 
Singular Value Decomposition (SVD) algorithm, which implies a large level of concurrency and data 
transfers.  

Although a large-scale SVD is also required in Stage 3, the data generation involved in that stage 
already operates on a ROM, which should significantly reduce the cost of this process. Stages 4 
and 5 operate on a hyper-reduced model, further diminishing the cost of these stages. Therefore, 
in the following subsections we focus on the first two stages, identifying their main bottlenecks, 
and quantifying their contribution to the execution time of the workflow. 
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3.1 Generation of the input data (stage 1) 
This stage is tackled in the workflow using KRATOS,1 an open source framework for the 
implementation of numerical methods for scientific and engineering problems. The baseline 
problem that underlies KRATOS, when used to generate the input data for Pillar I, boils down to 
the solution of a large number of simulations (in the order of hundreds), covering the most relevant 
scenarios. Each simulation typically represents a time dependent process (with more than 200 
time steps). The problems to be described are nonlinear, and require an iterative solution 
procedure (typically around 3 iterations per time step). 

The linear systems appearing in this application are sparse, and present no special structure (e.g., 
band, symmetry, etc.) other than a symmetry in the underlying graph, nor property (positive 
definiteness, etc.). In the current realization of stage 1 for the workflow underlying Pillar I, these 
linear systems are solved using an Algebraic Multigrid (AMG) preconditioner in combination with 
a Krylov subspace-based iterative solver. Specifically, the Pillar stack employs the AMGCL software 
package2 for this purpose. This numerical tool provides backends for multicore processors as well 
as GPUs on top of OpenCL, CUDA and OpenMP.  

To acquire a general understanding of the dimensions of the problem, we performed a preliminary 
profiling of the AMGCL backend for CPUs, using an Intel(R) Core(TM) i7-1165G7 multicore 
processor.  The selected testcase corresponds to a Navier Stokes problem coming from the 
discretization of the fluid domain of an electrical motor cooling simulation (selected testcase for 
the demo of Pillar I).  This particular sparse linear system presents about 800.000 unknowns. The 
GMRES method in AMGCL, combined with an ILU0 preconditioner in the same package, was 
applied to the solution of the linear system. The analysis reported that the memory footprint for 
the solver was 609.33 MB and that of the preconditioner was 1.61 GB. The iteration was stopped 
when the relative residual of the solution was below 1.0e-9, which required 26 iterations. The 
results from this analysis showed that a significant part of the execution time of the standalone 
solver (65.79%) was spent reading the data from disk. In a real scenario, though, the data for the 
linear systems come from a prior stage and this time is therefore discarded for the following 
analysis. The second and third phases that dominated the execution time were the iteration solve 
(25.85%) and preconditioner setup (8.35%), respectively. Considering only these two phases, the 
execution time varied between 85.24 seconds when using a single core, 48.26 seconds for 4 cores, 
and 35.89 seconds when the full socket (i.e., 8 cores) was employed. The speedup of the 
preconditioner setup was practically nonexistent: 1.05 and 1.18 when using 4 and 8 cores, 
respectively. The iterative solve reported a mild parallel scalability: 2.27 and 3.50 for 4 and 8 cores, 
respectively. 

Identified bottlenecks 
[CP.I.1] Delving further into the software stack, depending on the convergence rate of the iterative 
solver, in general the computational cost of stage 1 in the workflow is dominated either by the 
construction of the AMG preconditioner or the Krylov subspace-based iterative solver. In the 
former case, depending on the type of preconditioner that is applied, special attention must be 
paid to the kernel for the sparse matrix-matrix multiplication (SpMM) and sparse triangular solve 
(SpTrsv). For the latter case, we need to take into account that the selected iterative process in 
Pillar I is a variant of the conventional GMRES or BiCGStab Krylov subspace methods. In 

                         
1 https://www.cimne.com/kratos/ 
2 https://github.com/ddemidov/amgcl/ 
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consequence, the critical kernel in this case may be the sparse matrix-vector product (SpMV) or 
the orthogonalization process involved in the GMRES. For GMRES, the kernel for the general matrix-
vector product (GeMV) that is necessary to estimate the search direction of the method can also 
play an important role from the computational perspective. 

[CP.I.2] From a computational point of view, the global cost is dominated by a sparse linear system 
of equations, representing the Jacobian of the FEM problem to be minimized. In the case of 
performing 100 simulations, each with 200 time steps and with 3 nonlinear iterations, one would 
need to solve 600 times the linear system of equations per simulation (so a total of 60,000 times). 
We remark that each simulation is completely independent from the others and, therefore, the 
problem is embarrassingly parallel at that level. 

Potential optimizations 
The (compute-specific) kernels identified in the first stage (generation of the input data) are 
memory-bound. This implies that any optimization strategy needs to consider very carefully the 
cost of moving the data across the memory hierarchy of the computer. Communication-reduction 
techniques for this type of kernels, dealing with sparse matrices, tackle this problem by a 
combination of the following: 1) designing specialized data structures to reduce the overhead of 
the indexing information and/or improve data locality; 2) combining different precisions for the 
floating point data; and 3) eliminating synchronization points due to collective reductions (though 
some of these options may come at the cost of numerical stability and impact the convergence 
rate of the iterative solver.) Significant gains can also be attained via the use of alternative 
preconditioners which present a better fit to the target problem. In the project, the use of FPGAs 
paves the road to the exploration of customized floating point formats to store the data in memory 
and perform the floating point arithmetic. 

 

3.2 Data extraction (stage 2) 
Identified bottlenecks 
[CP.I.3] The baseline realization of this stage relies on the SVD to compress the original system 
model into a ROM, where the accuracy of the representation is adjusted via the singular values, 
which are used to truncate the decomposition to a certain point. In the current implementation, 
the use of a randomized variant of this decomposition [Mar20] significantly reduces the 
computational, communication and storage costs of this operation. In some detail, the randomized 
SVD is obtained via 1) a couple of large-scale general matrix-matrix multiplications (GeMMs), 2) 
the QR factorization of a tall-and-skinny matrix, and 3) the SVD of a small, “squarish” matrix. Taking 
into account the dimensions of the operands that participate in each one of these computations, 
the computational kernel that dominates this stage is the GeMM followed, to a much lower extent, 
by the QR factorization. The contribution of the final SVD is negligible; see Table I. 

[CM.I.1] As a starting point for the identification of the bottlenecks in this stage of Pillar I, we 
implemented3 a prototype version of the randomized SVD as a PyCOMPSs script that builds upon 
the dislib4 methods. The initial strategy designed for this purpose was based on the distributed 

                         
3 The evaluation of stage 2 of the ROM Pillar was performed on the MareNostrum 4 (MN4) Supercomputer. Each node 
of this platform has two Intel Xeon Platinum 8160 (24 cores at 2,1 GHz each) and 96GB of main memory. More details 
of MN4 can be found in https://www.bsc.es/marenostrum/. 
4 See D1.1 for a description of dislib and PyCOMPSs. 

https://www.bsc.es/marenostrum/
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array (ds-array), which is the basic dislib data structure. A ds-array is a matrix divided into blocks 
that are stored in a distributed way  in a set of nodes of a computational cluster. Each block of a 
ds-array is a NumPy array or a SciPy CSR (Compressed Sparse Row) matrix, depending on the type 
of data used to create the ds-array. The script invokes a few dislib methods, following the order 
indicated in Table I: GeMM, QR factorization, transpose, and SVD. The script was first tested with 
small size matrices for correctness, and the size was then increased to assess the experimental 
costs of the components on realistic values for Pillar I. This initial evaluation revealed a 
performance drop when operating with an input matrix A of one million rows by 5000 columns, 
and a matrix � of size 5000 by 110. The main reason for this performance decline was the dislib 
method for the QR factorization, which required its input ds-array to be organized into square 
blocks. Given the size of the input matrix, this implied that the largest block size was 110 by 110. 
In consequence, PyCOMPss generated a considerable number of tiny tasks, yielding a significant 
overhead due to task management. 

 
Table I. Operations in the computation of the randomized SVD in stage 2 of the ROM Pillar. In the problems to be solved in this 

Pillar, the dimension n is in the order of millions to tens of millions (n ~ O(106-107)) while m is in the order of few thousands (m ~ 
O(103)). The third problem dimension, k, needs to be dynamically adjusted during the computation process but it is usually in the 

range of a few hundreds. 

Computation Kernel Theoretical cost  
(in floating point operations) 

1. Generate random �; compute Y=A � GeMM 2nmk 

2. Compute truncated QR factorization Y = 
QR 

QR O(nk2) 

3. Compute B = QT A GeMM 2nmk 

4. Compute the SVD B=UBSVT SVD O(mk2) 

5. Compute the left singular vectors U = QUB GeMM O(nk2) 

 

As part of our initial effort to identify the actual bottlenecks in this stage, we refined the prototype 
implementation for the randomized SVD in order to leverage the distributed array and the dislib 
methods in steps 1, 3 and 5 (including the computation of the transpose) and to use local 
operations for steps 2 and 4. In order to invoke the local operations, in this second version the 
distributed data was gathered in one cluster node, the corresponding method (QR or SVD) was 
invoked locally, and the data was again converted to a ds-array for the subsequent step. While this 
fan-in/fan-out of data introduced some communication overhead, the strategy proved to be much 
more efficient, and we were able to compute the randomized SVD of matrices with one million 
rows and 5000 columns in 1-2 minutes; and for matrices with 10 million rows and 5000 columns 
in less than 4 minutes.  

As mentioned previously, we observed some overhead sources in this stage when gathering and 
scattering data from multiple computing nodes in the randomized SVD script. These overheads 
occur when changing from the distributed format of the ds-array to a centralized format (a single 
NumPy array). In its current implementation, the gathering implies a number of data transfers 
from multiple nodes to one node, followed by a sequential NumPy block operation to convert the 
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blocked list into a single NumPy array. This operation is currently encapsulated in the “collect” 
method of the ds-array.  

[ST.I.1] In order to exchange data in memory between nodes, PyCOMPSs serializes the tasks’ 
output objects into files. The profiling performed with the initial tests of the randomized SVD script 
allowed us to detect an issue due to the data serializations that PyCOMPSs performs. In particular, 
we observed an increase in the serialization times when generating random ds-arrays using as 
temporary storage the local disk in the nodes. This problem did not appear when using the shared 
file system.  

Potential optimizations 
The profiling of the current script exposes some bottlenecks in step 2, both for the 
gathering/distribution of data and the QR itself, and in the transposition that appears prior to step 
3. We have identified the following potential optimizations to alleviate these bottlenecks (only 
computational bottlenecks are listed below): 

- Optimization of the distributed QR by implementing a version for tall-and-skinny matrices 
in dislib.  

- Extension of the dislib routine for matrix multiplication to support transposed matrix 
operands. 

- Reformulation of the gathering as a reduction operation, enabling dislib to perform the 
block operation in parallel. We foresee a solution based on the reduction decorator of 
PyCOMPSs (@reduction) that performs the corresponding operation as a set of tasks, first 
operating at node level and later between nodes, reducing the number of communications 
and exploiting the locality, while at the same time the operation is performed in parallel.  

At this point we want to mention that a more challenging optimization is to replace the complete 
calculation of stage 2 (data extraction) with a module based on deep neural networks, possibly via 
autoencoders. The evaluation of the potential of this approach is still in a germinal stage, to the 
point where it is too early to identify potential bottlenecks. It is however interesting to remark 
that, in many cases, we use the SVD as a first step of reduction, and we then leverage the data 
projected onto the SVD basis to train the autoencoder. This implies that the “heavy lift” in the 
autoencoder reduction is still done with the linear SVD kernel allowing to take advantage of the 
optimization described just above. 

 

4. Pillar II: Dynamic and adaptive workflows for 
climate modelling 
The use case defined in Pillar II is divided into two workflows (see Figure II). The first workflow is 
the ESM (Earth System Model) Dynamic (AI-assisted) workflow whereas the second one is the 
Feature Extraction and Statistical Analysis workflow. In some detail, the first one leverages specific 
software packages from the climate science domain, in particular OpenIFS and FESOM2, in order 
to conduct climate simulations. In consequence, the identification of bottlenecks for this workflow 
is focused on OpenIFS and FESOM2, as they represent the most compute-intensive parts. 
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Figure II. General view of the dynamic and adaptive workflow for climate modelling. 

 

The second workflow defines two use cases with input sources reflecting two distinct application 
scenarios. The first use case represents the base scenario where extraction and analysis of Tropical 
Cyclone (TC) detection and tracking information are applied on the output of a single climate 
model, specifically CMCC-CM3. This model is defined in the Community Earth System Model 
(CESM) project, with the CESM ocean component replaced by the NEMO physical core, version 
4.0. The second scenario considers large volumes of data from centennial CMIP6 products at the 
highest horizontal resolution available and with a temporal frequency of at least 6 hours. In 
summary, CMCC-CM3, NEMO, DA, and TC are used in this workflow. 

In the following, we discuss the bottlenecks identified in each workflow. 

 

4.1 ESM Dynamic (AI-assisted) Workflow 
4.1.1 OpenIFS 
OpenIFS is the open access to IFS (Integrated Forecasting System) specifically designed for research 
and teaching. OpenIFS provides a numerical weather prediction tool that operates with medium 
range to seasonal timescales. OpenIFS is written in Fortran with some small parts of the code 
written in C. The software leverages MPI and OpenMP and currently there is no support for GPUs.  

Identified Bottlenecks 
OpenIFS was recently analyzed in [OPENIFS-BSC]. We next summarize the main findings from that 
report: 

- [CP.II.1] According to the general profiling, OpenIFS presents unbalanced computations in 
the following modules: physical calculations, first block of transposition/transformations, 
and gnorm/spnorm calculations. 

- [CM.II.1] OpenIFS also exhibits unbalanced collective communications, with a large 
number of isend/recv, irecv+wait_any calls. 

- [CM.II.2] In addition, the report identifies a synchronization point where all the processes 
need to agree on whether or not to continue the simulation (sigcheck). 
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OpenIFS can be combined with NEMO. In this case the report identifies two additional bottlenecks: 

- [CM.II.3] A big number of send/recv calls with small useful duration phases. 

- [CM.II.4] A large number of Allreductions in the PCGSolv function. 

Potential optimizations 
The following potential optimizations are proposed in the report: 

- Introduce asynchronicity in the calculation of the sigcheck signal, overlapping the execution 
of the current iteration with a broadcast of the signal from the previous one. 

- Introduce asynchronicity in the norm calculations, overlapping the norm calculation 
corresponding to one iteration with the computations for the next one. 

- For the particular case of NEMO, the number of allreductions in PCGSolv can be diminished 
by relaxing the rate of convergence check in addition to using a SOR (successive over-
relaxation) method. 

 

4.1.2 FESOM2 
FESOM2 (Finite-volumE Sea ice-Ocean Model) is a multi-resolution sea ice-ocean model that solves 
the motion equations for unstructured meshes. The performance of FESOM2 has been analyzed 
in different studies, including some preliminary studies between BSC-ES and ECMWF. Here we first 
focus on the results from the report by the Earth model performance analysis group at BSC-ES 
[REP-FESOM2].  

Identified bottlenecks 
[CM.II.5] The FESOM2 code is divided into three phases: init, init2 and iterative process. The init2 
phase does not scale with the number of processors, mainly due to irregularities in the 
communications that introduce serialization. Indeed, using more processors in this phase increases 
its execution time.  

[CM.II.6] Multiple iterations are performed in the iterative process phase. Each iteration consists 
of an Ocean (sub)phase and an Ice (sub)phase. There is a large collective communication that 
consumes 5% of the time and does not scale when a larger number of processors is used. 

[CM.II.7] In the Ocean phase there is a load imbalance since some subdomains contain more layers 
than others. In addition, the Ice phase has a large number of fine grain MPI communications. This 
represents a communication bottleneck since computation is serialized and asynchronous 
communication is not possible. 

An evaluation using the PAPI (Performance Application Programming Interface) tool revealed the 
following additional data. The instantaneous parallelism of the time-step phase comprises, on 
average, 36% of the time. This means that only 36% of the MPI parallel resources are doing useful 
work (e.g. not waiting for communication). The load imbalance of the ocean calculation produces 
a reduction of the parallelism when communication is performed. Also, the low granularity of 
computation between communications affects the Ice phase with low parallelism. This results in 
the useful IPC (instructions per cycle) rate being in general lower than IPC. Indeed, the 
performance of the Ice areas is affected dramatically, while the ocean areas experience an impact 
when close to the communications.  
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These scalability problems are also analysed in [Koldunov19]. The study in that work concludes 
that FESOM2 suffers from parallel scalability issues as bottlenecks arise from the saturation of the 
parallel communication after the number of mesh partitions becomes smaller than a certain 
threshold of surface vertices per compute core, depending on the model and on the hardware 
employed. 

The components of the ocean circulation models responsible for limiting scalability have been 
identified to be the solver for the external (barotropic) mode and the sea-ice model. Both 
represent 2D stiff parts of the solution algorithm and require either linear solvers (usually iterative) 
or explicit pseudo-time-stepping with very small time steps. Both approaches are not particularly 
computationally expensive but introduce numerous exchanges of 2D halos per time step of the 
ocean model. Therefore, the bottlenecks are due to communication and not to computation. In 
addition, current CPU architectures appear to be well suited for nearly all 3D computational parts 
of FESOM2. 

[CP.II.2] Currently FESOM2 runs on CPU. Porting other compute-intensive kernels beyond tracer 
advection to GPUs, EPI and even FPGAs may improve performance of the workflow. 

[CPI.II.3] One important aspect of this workflow is the high number of simulations that need to be 
performed in the HPC system. This entangles a computation-specific bottleneck. 

Potential optimizations 
From the two analyses of FESOM we can derive the following possible improvements for the 
mitigation of bottlenecks. These improvements point in the direction of increased memory 
bandwidth, lower communication latency, and more efficient file systems. Therefore, it is vital to 
choose the “optimal” hardware. Suboptimal scaling of the sea ice combined with a sequential 
arrangement of sea-ice and ocean steps results in an inefficient utilization of the computational 
resources and indicates a clear direction for improvement. This, together with a better, scalable, 
parallel I/O, is the direction for future model code development to enable high-resolution climate 
simulations with reasonable throughputs. 

The following recommendations are listed in [REP-FESOM2]: 

- Review the broadcast communication to avoid the irregular pattern that produces load 
imbalance in the communications (MPI study). 

- Review initialization algorithm to avoid the irregular pattern which produces load 
imbalance in the communications (Init2 study). 

- Evaluate the possibility of OpenMP to avoid serialization, the reduction of the number of 
MPI communications and low computation granularity due to the several communications 
during the Ice calculation (MPI study). 

- Evaluate the possibility of the reduction of the MPI communications during the Ice 
calculation if OpenMP is not a possibility. 

- Review the domain decomposition algorithm to improve the load balance in the ocean 
calculations (MPI study). 

- Since the bottlenecks presented in the previous points result in low parallelism of the 
model execution, the computational performance of the model is affected, for example, 
reducing the IPC efficiency (PAPI counter study). In case any of the suggested optimizations 
explained before is introduced, the parallelism (and subsequently the computational 
performance) will be improved at the same time. 
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- Review the locality of the two areas with low IPC and high cache misses to improve the 
performance of a computation phase (PAPI counter study). 

- Review the dependencies in the calculation loops for the area of calculation with low VEC 
(PAPI counter study). 

As commented above, One important aspect of this workflow is the high number of simulations 
that need to be performed in the HPC system. This entangles a computation-specific bottleneck. 
One approach envisioned in the project to tackle this issue consists in developing components or 
functionality in order to enhance ensemble members simulation runs with the capacity to prune 
members that do not add useful information to the whole simulation. The idea is to make a more 
efficient use of the computational and storage resources by performing a smart (AI-driven) pruning 
of ensemble members (and releasing resources accordingly) at runtime. Based on this idea, certain 
Neural Network (NN) computational kernels, such as GeMM, convolutions (CONV), and activation 
functions may become potential compute-specific bottlenecks that could be addressed within the 
project. 

 

4.2 Feature Extraction and Statistical Analysis Workflow 
4.2.1 NEMO 
NEMO stands for “Nucleus for European Modelling of the Ocean” and is a modelling framework 
for research and forecasting services in ocean and climate sciences. The NEMO ocean model has 
three major components (also known as core engines): 

- NEMO-OCE models the ocean dynamics and solves the primitive equations. 

- NEMO-ICE models sea-ice dynamics, brine inclusions, and subgrid-scale thickness 
variations. 

- NEMO-TOP models the online and offline oceanic trace transport and biogeochemical 
processes. 

The NEMO model is a critical computing component of the Earth System Model (ESM) workflow 
foreseen in the context of Pillar II, as it represents one of the members included in the CMCC-CM3 
model. NEMO is supported by a large Community while several optimizations are being developed 
in parallel. However, in order to discuss the bottlenecks in this component, we will stay with the 
official release of NEMO (v4.0). At this point, we note that NEMO has been previously analysed in 
other projects, such as IMMERSE5, IS-ENES3 [ISENES-NEMO], PRACE [PRACE-NEMO], and by the 
Performance Optimisation and Productivity Centre of Excellence in HPC (POP) [POP-NEMO]. In this 
section of the deliverable, we summarize the results in these documents that are of interest to the 
eFlows4HPC project. 

The baseline version of NEMO is single-threaded and uses MPI for communication. From this 
starting point, several optimizations have been recently added to NEMO, following the analyses 
and optimization efforts performed in [ISENES-NEMO] and [POP-NEMO]. The first optimization 
deals with single core performance. In this optimization, the computation is divided to obtain one 
MPI domain per node, and each domain is further divided into tiles. The dimension of these tiles 

                         
5 https://immerse-ocean.eu/ 
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is determined according to the node cache geometry in order to avoid data eviction from the 
processor cache hierarchy, yielding a better exploitation of data locality.  

NEMO v4.0.2 has been also profiled and analysed in MareNostrum4, and the results are collected 
in the POP report [POP-NEMO]. That work provided insights on the communication overheads that 
constrain NEMO’s efficiency. In particular, the north fold was identified as one of the main 
constraints to the model scalability. The report proposed acting on the granularity of the dynamic 
solver as a way to reduce idle periods during the execution of NEMO.  

The analysis of the communication overheads has also been addressed in [ISENES-NEMO]. Two 
optimizations were applied there. First, point-to-point primitives, used in NEMO routines to 
update the halo region before performing computation on the generic point using values of its 
neighbours, were replaced by MPI3 standard collective communications. Second, the frequency of 
exchanges was reduced by increasing the dimension of the halo region. 

Identified bottlenecks 
[ST.II.1] For the NEMO model, there is one clear potential bottleneck in the communication 
infrastructure. The XIOS library (XML-IO-Server), used for I/O, stores the output of diagnostics and 
other data produced by climate component codes into files that are then passed to temporal and 
spatial post-processing modules that operate on this data. XIOS is extensively used in NEMO and 
is based on the server concept where I/O tasks are leveraged and performed asynchronously. Thus, 
the diagnostics in NEMO were offloaded from the model and run in parallel with ocean dynamics. 
Efforts in this direction are underway in order to port these diagnostics to the GPU, whereas the 
rest of NEMO runs completely in CPU.  

[CP.II.4] Among all the components building the NEMO model, two ocean tracers routines 
(advection6 and diffusion7) are the most frequently executed. The advection kernel computes the 
current trend due to total advection of tracers using different schemes (e.g., the MUSCL or 
Monotone Upstream-centered Scheme for Conservation Laws), and adds it to the general tracer 
trend. The diffusion operator computes the horizontal tracer diffusive trend and adds it to the 
general trend of a tracer equation.  

The number of passive tracers can in the order of dozens, especially when the biogeochemical 
component is active. In this regard, the shared memory parallelization of the advection and 
diffusion kernels could raise the overall performance. Although the MPI support has been 
improved (replacing point-to-point to collective primitives), the ocean tracers routines still 
represent a serious compute-specific bottleneck. 

[CM.II.8] A prototype GPU implementation has been reported to achieve a 2.5x speedup factor 
when compared to a CPU-only implementation. However, in a MPI + multi-GPU environment 
performance does not scale and is similar to a MPI CPU-only implementation. This is mainly due 
to the needed CPU-GPU transfers when communicating GPUs among them, representing a 
communication bottleneck. 

[ST.II.2] The CMCC-CM3 climate model will produce massive outputs of data that need to be stored 
for being processed by subsequent operations in the workflow. In addition, global data produced 
by the workflow needs to be accessed frequently and may also increase in size. Given the large 
size of the output (tens of gigabytes), this may create a potential storage bottleneck. 

                         
6 http://forge.ipsl.jussieu.fr/nemo/browser/NEMO/trunk/src/OCE/TRA/traadv_mus.F90 
7 http://forge.ipsl.jussieu.fr/nemo/browser/NEMO/trunk/src/OCE/TRA/traldf_lap_blp.F90 
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Potential optimizations 
Several optimizations can be applied to NEMO. At the function level, OpenMP can be used in order 
to exploit the internal parallelism of specific kernels, in particular, the two tracer functions 
identified. At a complementary level, a more advanced parallelization approach can be applied to 
the NEMO model in order to improve its performance. Indeed, the tile concept used in NEMO 
fosters parallelization, as tiles are totally independent of each other. Thus, MPI and OpenMP can 
be used to implement a hybrid-parallel solution, at the system level and the node level 
respectively. 

A second potential improvement consists in migrating NEMO to run on GPUs. Indeed, there is an 
effort within the NEMO Community to leverage GPUs. This work relies on the adoption of a Domain 
Specific Language (DSL) for climate and weather modeling via PSyclone (developed by STFC) or 
DAWN (developed by MeteoSwiss, CSCS, ETHZ, and Vulcan). With this type of approach, most of 
the community can stay with the original code and not worry about new programming languages 
such as CUDA for GPUs. However, this path potentially sets a performance limitation since not all 
GPU features are guaranteed to be exploited by the DSL. Indeed, NEMO can be ported partially to 
GPU, specifically using CUDA, and adjusting the implementation to the underlying architecture of 
the target GPU. This is the case of the two identified tracers routines, which can be implemented 
and optimized on CUDA. 

The limitation in the use of multi-GPU systems (CPU-GPU memory transfers) can be alleviated by 
the use of the NVIDIA Collective Communication Library (NCCL). This library is optimized for 
collective communications, as those used in NEMO, and allows for efficient direct access to GPU 
memory without the intervention of the CPU. Therefore, this solution can mitigate the problem 
identified in the current multi-GPU implementation. An alternative strategy consists in leveraging 
CUDA-aware MPI implementations, which can also avoid the use of CPU memory as a temporal 
buffer resource for communication between GPU devices. 

For storage, new technologies such as NVRAM may help alleviate the bottlenecks for the output 
of the CMCC-CM3 climate model and for the frequent retrieval of global information of the Feature 
Extraction and Statistical Analysis workflow. 

In this part of the workflow, the project will also aim to deploy ML-based schemes (e.g. based on 
NNs) for TC detection and tracking. This also entangles the necessity to consider NN-specific 
kernels (GeMM, Convolutions, activation functions) as possible compute-specific bottlenecks. The 
project will care about efficient implementations of these kernels on specific devices (GPUs, FPGAs 
and EPI). 

5. Pillar III: Urgent Computing 
Pillar III deals with Urgent Computing (UC) related problems. These are defined as problems that 
need HPC/HPDA (High Performance Data Analytics) systems immediately after an emergency 
situation, and typically combine complex edge-to-end workflows with capacity computing under 
strict time-to-solution constraints. Within the project, two UC applications are targeted: Tsunamis 
and Earthquakes. Both present the same sequential phases: 

1. Pre-processing phase. 

2. Simulation phase. 

3. Post-processing phase. 
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In the pre-processing phase an ensemble of possible sources is defined based on seismic data 
assimilation and earthquake parameter estimation. In the simulation phase, individual cases are 
simulated for all the scenarios in the ensemble. Then, in the post-processing phase the simulation 
results are processed to produce probabilistic forecasts, and affectation maps. In both UC 
applications, the compute intensive parts appear in the simulation phase. We next describe the 
identified bottlenecks for each use case. 

 

5.1 Tsunamis (PTF/FTRT) 
The PTF/FTRT workflow is depicted in Figure III. The Tsunami use case relies on simulations 
performed using Tsunami-HySEA. This is a numerical model of the HySEA family specifically 
designed for quake-generated tsunami simulations. The model relies on GPUs to obtain a faster-
than-real-time (FTRT) realisation. The model leverages CUDA (custom kernels) to implement an 
explicit numerical solver, involving small matrices, and does not rely on any linear algebra libraries. 
MPI is leveraged to enable multi-GPU simulations. Tsunami-HySEA is embarrassingly parallel and 
a stencil-type computation is performed on each GPU. Data locality within the GPU is exploited at 
the GPU block granularity.  

 

 
Figure III. Schematic representation of the PTF/FTRT workflow. White boxes are building blocks already implemented. Yellow 

boxes are building blocks planned to be developed. 

 

Two audits were recently performed within POP for the Tsunami-HySEA model [POP-HySEA1], 
[POP-HySEA2]. We next list the observations from the first audit: 
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- A synchronous MPI communication between processes was identified as the main limiting 
factor for scalability.  

- Scalability issues, mainly due to load unbalanced, produce MPI waiting time. 

- Point-to-point communications are limited by the network bandwidth. 

- CUDA parallelization is fair but scaling problems appear because of the overhead resulting 
from launch kernels. 

Therefore, the model was adapted to introduce asynchronous communications in order to overlap 
them with computation.  

In the second audit, a GPU kernel was identified as a bottleneck. This kernel was improved and the 
bottleneck removed. The main observations from this second audit were: 

- MPI point to point communications are overlapped with execution of kernels. 

- MPI allows direct transfer to the devices (GPU). 

- Communication bottlenecks appear due to inefficient GPU kernels. 

With this second audit, specific kernels were identified and optimized, thus removing the 
remaining communication bottlenecks. 

Identified bottlenecks 
[CP.III.1] With the two reported analyses, the Tsunami-HySEA is a well balanced and optimized 
model running on multi-GPU systems. Therefore, there are no clear compute-specific bottlenecks 
that can be addressed within the model itself. However, the number of simulations to perform in 
the PTF/FTRT workflow will be significant (from hundreds to thousands) and may induce a 
compute-intensive bottleneck, depending on the availability of HPC resources.  

[CM.III.1] A potential communication-specific bottleneck in the PTF/FTRT workflow may appear in 
the transmission of the results from Block #3 to Block #5. The data transfers can be expensive, 
generating a significant communication overhead. Therefore, this is a potential source of 
bottlenecks in the Tsunami simulation. 

[ST.III.1] The output produced by the Tsunami-HySEA may also impose a storage bottleneck due 
to its size and the large number of simulations to perform.  

Potential Optimizations  
Machine Learning to reduce Simulation Workload 

The set of simulations performed in Block #3 (Tsunami simulation) of the PTF/FTRT workflow (see 
Figure III) can produce large amounts of stream data (simulation results), characterized by high 
volume and high generation rate (i.e., high frequency of simulations). This may require that the 
simulation aggregation task performed by Block #5 (Simulations merging) leverages machine 
learning (ML) algorithms for analysis of simulation output adopting efficient and scalable solutions 
to satisfy the required short-time constraint imposed by the Tsunami use case.  

In fact, the simulation results, produced by Block #3 in the form of data streams, can be analysed 
by a parallel machine learning algorithm to keep the pace with the rate of generated data streams. 
In particular, a frequent pattern algorithm could be used to analyse the simulation results and 
detect the frequent patterns hidden in the data very quickly, thus discovering the knowledge 
models in a very short time. Conversely, a frequent pattern is a set of items, subsequences, or 
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substructures that occur frequently together (or strongly correlated) in the data set. This could 
provide several benefits and additional insights to the tasks that are executed in Blocks #4 and #6. 
For example, assuming that simulations are run by tuning several input settings, frequent itemsets 
in the simulation results may correspond to some patterns that are invariant with respect to the 
different simulations. Typically, we may have hundreds of simulations (about 400 or 500). 
Therefore, although the simulations exploit parallelism at some degree, the total execution time 
may be high. In consequence, the use of a machine learning strategy to reduce the number of 
simulations without losing accuracy may present an optimization opportunity. 

Considering the specific case we are dealing with, Block #3 of the PTF/FTRT workflow produces 
simulation results in the form of data streams. We can integrate a pattern mining module (PM, 
Pattern Miner) in this architecture to discover (i) frequent items and (ii) frequent itemsets from 
such data streams. The first task, namely frequent-item discovery, is very popular both for its 
simplicity and because it is often used as a subroutine to discover the frequent itemsets: its goal is 
to find, in a sequence of items, those whose frequency exceeds a given threshold min_sup. The 
second task consists in the discovery of frequent itemsets defined as a set of distinct items 
appearing together (or concurrently appearing) in a number of transactions whose frequency is 
equal or higher than min_sup. This task can be severely time-consuming, since the number of 
candidates is combinatorial with the size. The usual technique is to first discover frequent items, 
and then build candidate itemsets incrementally, exploiting the Apriori property, which states that 
an itemset can be frequent only if all of its subsets are also frequent. This becomes a crucial issue 
in our proposed machine learning module because, as previously mentioned, Block #3 may involve 
hundreds of simulations, computed sequentially or in parallel, thus producing high data volumes 
(simulation results) at high generation rates. 

Potential improvement (Communication-related) 

To speed up the transfer of data that compose the output of Block #3 to Block #5 for data 
simulation merging, data transmission can be done in streaming, by exploiting in-memory storage 
and bypassing database reading/writing just during this phase. However, the output data from 
Block #3 are simulation results that can be also used by Block #4. For this reason they still need to 
be stored in the simulation database. Because of this, Block #3 or Block #5 write these data in the 
Simulations DB. For example, after it merges simulation data, Block #5 just could send its output 
to Block #6. In this way, secondary storage access will not affect the speed of this computation 
phase, because it is done in parallel with the operations in Block #6. By streaming data coming 
from the simulation execution, the flow of data generated by various simulations can be managed 
and collected, overlapping simulation computation and data communication. By using stream 
processing techniques, data streams can be processed, stored, analysed, and acted upon as if they 
were generated in real-time. This approach may introduce concurrency between the execution 
and communication steps avoiding the serialization of those operations and minimizing the 
interactions between operations of Block #3 and Block #5. 

If the streaming approach is considered, the computation of Block #3 and Block #5 can be seen as 
a Map-Reduce step that exploits parallelism both in simulation execution (map phase) and in 
simulation results merging (reduce phase). Map-reduce provides a general partitioning and 
processing mechanism to distribute aggregation workload across different processors, thus it 
could be appropriate for the HPC platforms we are considering. According to this strategy, Block 
#3 can be implemented as a set of mappers, which execute simulations from the input data in 
parallel, whereas Block #5 can be implemented as a set of reducers, which merge simulation 
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results. To be aligned with the project, this can be implemented with the DDS library, which 
implements a spark-like syntax on top of PyCOMPSs.  

MonteCarlo to reduce the number of simulations 

The number of simulations in the PTF/FTRT workflow can be reduced using a MonteCarlo method 
to steer the selection of a reduced number of the simulation scenarios. This may need to be 
embedded into an iterative refinement process, with several steps required for convergence.  

 

5.2 UC Integrated Services for EarthQuakes (UCIS4EQ) 
Figure IV illustrates the workflows scheme for the earthquake use case (UCIS4EQ). Most of the 
compute intensive part is performed in Block #4 (HPC simulations) running on HPC infrastructure. 
Full waveform modelling and inversion simulation is performed by the SALVUS suite. The 
remaining blocks in the UCIS4EQ workflow are light-weight compared to Block #4, and perform 
acquisition, preparation of data, and postprocessing. Therefore, they do not represent a potential 
compute bottleneck. 

 

 
Figure IV. Schematic representation of UCIS4EQ workflow. Gray boxes correspond to building blocks already deployed in external 

servers or in the cloud. The blue box is deployed in an HPC facility. The pink box represents a building block needing data 
streaming deployment. 

 

The SALVUS suite is proprietary software from Mondaic. The suite is optimized for HPC systems 
and can run either on CPU or GPU, using MPI as communication infrastructure between processes. 
SALVUS performance in GPUs has been profiled in POP [POP-SALVUS]. The following observations 
were provided in that report: 

- Good weak scaling behaviour on the initial case set, with little idle times per GPU. 
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- No disadvantage experienced when using the bigger per GPU test case sizes. 

- Three global synchronizations per iteration where computation overlaps reasonably well 
with the MPI communication. 

- One of the compute-intensive kernels requires a “sufficiently large” workload to hide 
communication. 

The following recommendations were provided: 

- Check if the number of synchronizations per iteration can be reduced as they may cause 
communication overlap to fail at a higher scale. 

- Run a production-size case and check whether the MPI process count becomes a noticeable 
problem. 

- Compare performance of different meshes in terms of complexity and their influence on 
load balance. 

- Run with I/O. 

Given the observations in this report, and because of the proprietary nature of SALVUS, we do not 
identify potential compute-specific bottlenecks. We observe though that communication-specific 
bottlenecks may arise within the SALVUS suite for a production-size case. 

Identified bottlenecks 
[CP.III.2] Within UCIS4EQ workflow, Block #7 (MLESmap) will rely on NN models. This does not 
represent a compute-specific bottleneck as the NN training will be performed off-line. However, 
they may affect Block #4’s previously identified compute-specific bottleneck since the output of 
Block #7 will be the input for the uncertainty quantification stage and will provide real-time 
affectation information prior to the availability of the simulated results obtained in Block #4. 
Therefore, we must regard Block #7 in general, and the use of NN in particular, as a potential 
attenuation factor for the Block #4 compute-specific bottlenecks in the UCIS4EQ workflow. 

[CM.III.2] The UCIS4EQ workflow has two critical points where communication-specific 
bottlenecks may appear. They arise because several types of systems used in the workflow are not 
connected tightly. The first point is between blocks #3 and #4. Block #3 (source building) prepares 
input data for the HPC simulations. This block is not performed at HPC premises and, therefore, its 
output data needs to be sent to the HPC system where the simulations take place. The amount of 
data ranges between 1 GB and up to 15 GB in some cases. Thus, the transfer time of this data may 
represent a communication-specific bottleneck. 

Similarly, the output data resulting from the HPC simulations at HPC premises need to be sent to 
non-HPC systems where data is post-processed in blocks #8 (Results postprocessing) and #9 
(Gathering). In this case, the data can occupy tens of GB. 

The remaining communication needs within the UCIS4EQ do not represent a bottleneck as they 
are performed within the same system and/or have much lower file sizes to transfer. 

[ST.III.3] The UCIS4EQ workflow relies on HPC simulations (block #4), performed in the HPC facility, 
which are those that need the largest files to be used/produced (either as input or as output). The 
dimension of these output files may impose a storage-specific bottleneck.  

[ST.III.4] In addition, UCIS4EQ relies on long term storage systems (DB and B2SAFE) where static 
and dynamic data are stored and retrieved. Dynamic data (data state along the workflow) does 
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not represent a potential bottleneck for storage since its size is low. However, static data (history 
information, pre-trained NN models, output data produced by simulations) may represent a 
storage-specific bottleneck. 

Potential Optimizations 
A path to alleviate the communication-specific bottleneck around Block #4 (at its input and at its 
output) is to conduct block #3 (preprocessing) and blocks #8 and #9 (post-processing) in the HPC 
infrastructure. With this, the transfer of data will be performed within the HPC network and its 
higher bandwidth and lower latency will significantly reduce transfer time. Once this is achieved, 
other optimization strategies can be considered. One option is optimizing data partitioning and 
performing parallel data communication together with Map-Reduce strategies in the interaction 
between all these blocks. Additionally, the use of faster storage technologies (e.g. NVRAM) may 
reduce bottlenecks in the HPC system for the UCIS4EQ simulations. 

 

6. All Pillars 
In addition to the ML/NN specific compute-intensive kernels [CP.X.1] for CONV, GeMV, GeMM, 
depending on the type of NN that is more appropriate for each individual Pillar, we have identified 
two potential bottlenecks for communication and storage when dealing with NN training.  

[CM.X.1] As we will rely on an HPC system with tens or hundreds of nodes, we will take advantage 
of a distributed training process. In this situation, it is of paramount importance to ensure the 
effectiveness of such distributed processes via an appropriate handling of synchronization and 
communication tasks. In this sense, an AllReduce communication is typically used in a distributed 
training process relying on data parallelism.  

[ST.X.1] The second bottleneck stems from the fact that input data set for the training process 
needs to be partitioned and retrieved from disk into the computing nodes prior or during the 
training process. Proper access to the dataset will be also key for achieving an efficient training 
process. 

7. Discussion 
In this section we first compile all the identified bottlenecks from the workflows to then discuss 
the suitability of using heterogeneous architectures, communication technologies or storage 
technologies to tackle such bottlenecks. 

Figure V displays a summary of the identified bottlenecks. Compute-related bottlenecks are shown 
there in green, communication-related bottlenecks in blue, and storage-related bottlenecks in 
orange. The bottom part of the figure shows all the bottlenecks identified in the different 
simulation frameworks and models (KRATOS, Randomized SVD, FESOM2, OpenIFS, NEMO, 
Tsunami-HySEA, and SALVUS). No clear bottlenecks were identified for Tsunami-HySEA because 
the application is fully optimized and embarrassingly parallel. The same issue applies to SALVUS, 
in this case also because this is part of proprietary software and we have no access to it. On top of 
each framework we show, for each pillar, bottlenecks identified at workflow level. 

The fact that all workflows rely on hundreds of compute-intensive simulations for the input 
generation phase is of particular interest. This represents an orthogonal compute-intensive 
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bottleneck for all workflows. Indeed, the three pillar workflows plan to address these overheads 
via the use of NNs and machine learning (ML) algorithms for effective prediction and pruning of 
ensemble members, though following a different approach in each case. In the top part of the 
figure, we highlight this fact by showing some of the most demanded types of operations in 
ML/NN. Specific kernels appearing in the pillars will need to be implemented efficiently to prevent 
bottlenecks. 

 

 
Figure V. Bottlenecks identified for the three Pillars as a result of the work performed in task T3.1. The bottlenecks are classified as 

compute-intensive, communication and storage using different colors: green, blue and orange, respectively. The figure also 
specifies the current support for each framework/model. 

 

7.1 GPU support 
Figure V also lists the current architectures currently supported by the simulation 
frameworks/models. For instance, neither FESOM2 nor OpenIFS use GPUs in their computations. 
This offers an opportunity to alleviate compute-intensive bottlenecks.  

Similarly, although NEMO has some side implementations with GPUs (using a DSL), the target 
version within the project has no GPU support. Thus, the workflow for Pillar II may benefit from 
an extensive use of GPU within their frameworks. It will be an interesting exercise to dig deeper 
into the two identified kernels in NEMO and assess how they behave when ported to GPU using 
CUDA. 

The two frameworks/models for Pillar III (Tsunami-HySEA and SALVUS) use GPUs for the 
computations. Indeed, in both cases GPUs are highly utilized in an efficient way and no bottlenecks 
were reported. 

Finally, we note that GPUs can be used for the development of NN models for the three pillar 
workflows. GeMM and CONV operations can run two to three orders of magnitude faster than the 
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same operation executed on CPUs. Therefore, it will be vital for the project to leverage GPUs for 
the training process of NN models for the pillar workflows. 

 

7.2 FPGA support 
From Figure V we can appreciate that none of the workflows use FPGAs in any stage. This is a clear 
sign that FPGAs are not yet considered a first-class citizen in HPC. However, in some situations, the 
use of FPGAs may provide benefits for the workflows, probably not in terms of raw performance 
but, being a highly energy efficient architecture, in performance-per-Watt. 

As a first possibility, the workflow for Pillar I relies on the AMGCL library within KRATOS for sparse 
matrix-matrix and matrix-vector multiplications as well as sparse triangular solve (SpMM, SpMV, 
SpTrsv). FPGAs are rather efficient when the problem to solve is irregular, and sparsity indeed 
introduces some type of irregularity in memory access patterns. FPGAs will be explored within 
Pillar I for the efficient implementation of the SpMM, SpMV, SpTrsv kernels. This will be combined 
with the use of mixed precision arithmetic, which can be easily customized and adapted in an 
FPGA. 

Alternatively to the use of FPGAs in Pillar I, the other two pillars may benefit from the use of FPGAs 
when implementing their NN models. Indeed, in both cases, a trained NN model will be inferred in 
order to prune running simulations. This inference process can be performed in an FPGA in a 
considerably more energy-efficient manner. Within this project we will tackle the use of FPGAs for 
the inference with NNs applied to the pillar workflows. 

 

7.3 EPI support 
The availability of commercial RISC-V instruction set architecture (ISA)-based processors with 
complete functionality is very limited or even nonexistent at the moment. This is especially the 
case for processors equipped with SIMD floating point units (FPUs) or hardware vector 
accelerators. It is difficult to foresee how fast this situation will change during the development of 
the project. For this reason, we plan to rely mostly on software simulators and FPGA-enabled 
designs in order to explore the performance and energy efficiency of the RISC-V ISA-based 
processors.  

We consider compute-intensive kernels to be especially interesting candidates to investigate on 
the RISC-V designs.  These include, for example, GeMM and SVD for Pillar I. In addition, NN-related 
kernels will be ported to EPI in order to provide support for Pillar II and Pillar III developments. 

 

7.4 Final List of Bottlenecks 
Table II summarizes the identified bottlenecks in each of the project Pillars. The Table also shows 
the type of bottlenecks and the potential optimization that can be applied within the project to 
alleviate them. Applicability of different heterogeneous architectures (GPU, FPGA, EPI) are 
indicated at the bottleneck level. Also, the complexity degree (Low, Medium, High) and potential 
benefits (Low, Medium, High) are specified for each bottleneck. 
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Table II. Final summary of bottlenecks identified for the three Pillars. 

Pillar/ 
Use 
Case 

Bottleneck  
Type 

Bottleneck/Optimization Applicability Complexity 
(L/M/H) 

Benefit 
(L/M/H) 

GPU FPGA EPI Storage Network 

Pillar I 
ROM 

CP.I.1 AMG preconditioner / SpMV / SpTrsv 
GMRES / GeMV 
GPU: Accelerate memory-bound operations 
via GPU 
FPGA: Use customized precision 

Yes Yes    High High 

CP.I.2 Hundreds/Thousand of simulations 
Train a Neural Network/Machine Learning 
model and perform simulation pruning 

Yes Yes    High High 

CP.I.3 Randomized SVD: GeMM / QR 
GPU: Accelerate computation 
EPI: Use wide SIMD (vector) instructions 

Yes  Yes   Medium Low 

CM.I.1 Gathering/Scattering data from multiple 
computing nodes in randomized SVD 
Improve transition from distributed to 
centralized format in ds-array 

    Yes Medium Low 

 ST.I.1 Serialization of data in PyCOMPSs 
Improve random generation of ds-array 

   Yes  Medium High 

Pillar II 
OpenIF

S 

CP.II.1 Unbalanced computations        

CM.II.1 Unbalanced Collective Communications 
Introduce OpenMP-based parallelization 

    Yes High High 

CM.II.2 Process synchronization 
Introduce OpenMP-based parallelization 

    Yes High High 

CM.II.3 OpenIFS-Nemo 
Will not be used in the project 

    Yes NA NA 

CM.II.4 OpenIFS-Nemo 
Will not be used in the project 

    Yes NA NA 

 
Pillar II 
FESOM

2 

CP.II.2 FESOM2 dwarfs 
Porting to GPU and FPGA 

Yes Yes Yes   High Medium 

CM.II.5 init2 irregular communications 
Avoid initialization algorithm to avoid 
irregular pattern with produces load 
imbalance in communications 

    Yes Medium Medium 

CM.II.6 Large collective operation not scaling 
Reduce MPI operations 

    Yes Medium Medium 

CM.II.7 Load imbalance in ocean phase 
Review the domain decomposition 
algorithm to improve load balance 

    Yes Medium Medium 

Pillar II 
OpenIF

S & 
FESOM

2 

CP.II.3 Hundreds/Thousand of simulations 
Train a Neural Network/Machine Learning 
model and perform simulation pruning 

Yes Yes    High High 
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Pillar II 
NEMO 

CP.II.4 Advection and diffusion tracers 
Porting to GPU 

Yes     Medium High 

CM.II.8 Multi-GPU communication using the CPU 
memory 
Using NCCL as communication protocol 
between GPUs 

Yes     High Medium 

ST.II.1 Large storage needs 
Use NVRAM technology 

   Yes  Medium Medium 

Pillar 
III 

Tsuna
mis 

CP.III.1 Hundreds/Thousand of simulations 
Train a Neural Network/Machine Learning 
model and perform simulation pruning 
Use MonteCarlo to reduce number of 
simulations 

Yes Yes    Medium High 

CM.III.1 Data transmission between  stages 
Streaming transmission 

    Yes Medium Medium 

ST.III.1 Large storage needs 
Use NVRAM technology 

   Yes  Medium Medium 

Pillar 
III 

Earthq
uakes  

CP.III.2 Hundreds/Thousand of simulation runs 
MLESmap (NN model) to perform 
simulation pruning 

Yes Yes    Medium High 

CM.III.2 Data transmission between stages 
Run preprocessing and postprocessing 
stages in HPC system (on premise) 

    Yes Medium Medium 

ST.III.3 Large output of simulations 
Use NVRAM technology 

   Yes  Medium Medium 

ST.III.4 Large dimensions of static data 
Use NVRAM technology 

   Yes  Medium Medium 

Neural 
Netwo
rks (all 
Pillars) 

CP.X.1 NN kernels 
Optimize implementation of the kernel for 
both training and inference 
FPGA: Energy Efficient implementation 

Yes Yes Yes   Medium Medium 

CM.X.1 Distributed training inefficient due to 
communication issues 
Efficient implementation of data parallelism 
Distributed training with specialized  
libraries (NCCL) 

    Yes Medium High 

ST.X.1 Dataset access in distributed training 
process 
New storage technology (NVRAM) to 
reduce access latency 

   Yes  Medium Medium 

 

8. Conclusion 
In this document we have addressed the identification process we performed in Task 3.1 for the 
potential bottlenecks that exist or may exist for the use cases defined by the three Pillars. Most of 
the work consisted in meetings with the Pillar’s partners and collection of a set of previous reports 
where specific components of the Pillar’s use cases were already analysed.  

The three Pillars are rather different but they end up showing related bottlenecks for the three 
axes we analysed (compute, communication, storage). The identified bottlenecks have been listed 
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and potential optimizations and strategies for addressing them have been identified for each 
bottleneck. Also important, we have matched them with new technologies that will be used within 
the project. 

The final Table of bottlenecks and expected actions will steer the subsequent development-related 
tasks within WP3. 
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9. Acronyms and Abbreviations 
- AI   Artificial Intelligence 
- AMG  Algebraic Multigrid 
- CESM  Community Earth System Model 
- CMIP6  Coupled Model Intercomparison Project Phase 6 
- CPU  Central Processing Unit 
- CONV  Convolution 
- CUDA  Compute Unified Device Architecture 
- D   Deliverable 
- DA   Data Analytics 
- DSL  Domain-Specific Language 
- EPI   European Processor Initiative 
- ESM  Earth System Model 
- ETHZ  Eidgenössische Technische Hochschule Zürich 
- FEM  Finite Elements Method 
- FESOM2  Finite Element Sea Ice-Ocean Model 2 
- FPGA  Field Programmable Gate Array 
- FPU  Floating point unit 
- FTRT  Faster Than Real Time 
- GB   Giga Byte 
- GeMM  General Matrix-Matrix product 
- GeMV  General Matrix-Vector product 
- GPU  Graphics Processing Unit 
- HPC  High Performance Computing 
- HPDA  High Performance Data Analytics 
- HySEA  Hyperbolic Systems and Efficient Algorithms 
- I/O   Input/Output 
- ML   Machine Learning 
- MLESmap  Machine-Learning based Estimator for ground motion Shaking maps 
- MPI  Message Passing Interface 
- MUSCL  Monotone Upstream-centered Scheme for Conservation Laws 
- NA   Not applicable 
- NCCL  Nvidia Collective Communication Library 
- NEMO  Nucleus for European Modelling of the Ocean 
- NN   Neural Network 
- NVRAM  Non-Volatile Random Access Memory 
- OpenIFS  Open Integrated Forecasting System 
- PAPI  Performance Application Programming Interface 
- POP  Performance Optimization and Productivity 
- PRACE  Partnership for Advanced Computing in Europe 
- PTF   Probabilistic Tsunami Forecast 
- ROM  Reduced Order Model 
- SALVUS   Spectral-Element Wave Propagation (software package) 
- SOR  Successive Over-Relaxation 
- SpMV  Sparse Matrix-Vector product 
- SpMM  Sparse Matrix-Matrix product 
- SpTrsv  Sparse Triangular Solve 
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- STFC  Science and Technology Facilities Council 
- SVD  Single Value Decomposition 
- TC   Tropical Cyclone 
- UC   Urgent Computing 
- UCIS4EQ  Urgent Computing Integrated Services for Earthquakes   
- XIOS  XML-IO-Server 
- WP   Work Package 
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