

D3.1 Application bottlenecks and optimization
opportunities on heterogeneous components

Version 1.0

Documentation Information

Contract Number 9555558

Project Website www.eFlows4HPC.eu

Contractual
Deadline 30.11.2021

Dissemination Level PU

Nature R

Author Universitat Politècnica de València (UPV)

Contributors
Rosa M Badia (BSC), Enrique S. Quintana-Ortí (UPV), Domenico Talia
(DtoK), José Flich (UPV), Eugenio Cesario (DtoK), Alessandro D’Anca
(CMCC)

Reviewer Gabriele Accarino (CMCC)

Keywords Bottlenecks, compute, communication, storage

This project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 955558. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and Spain, Germany,
France, Italy, Poland, Switzerland, Norway.

1

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

Change Log

Version Description Change

V0.1 First draft of the deliverable

V0.2 Major input from meetings from pillar partners

V0.3 Applied corrections as suggested during internal review

V1.0 Version formatted for submission

2

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

Table of Contents

1. Executive Summary ... 3

2. Introduction ... 3

3. Pillar I: Reduced Order Models .. 4

3.1 Generation of the input data (stage 1) .. 6

3.2 Data extraction (stage 2) .. 7

4. Pillar II: Dynamic and adaptive workflows for climate modelling ... 9

4.1 ESM Dynamic (AI-assisted) Workflow .. 10

4.1.1 OpenIFS ... 10

4.1.2 FESOM2 ... 11

4.2 Feature Extraction and Statistical Analysis Workflow ... 13

4.2.1 NEMO .. 13

5. Pillar III: Urgent Computing ... 15

5.1 Tsunamis (PTF/FTRT) .. 16

5.2 UC Integrated Services for EarthQuakes (UCIS4EQ) .. 19

6. All Pillars ... 21

7. Discussion .. 21

7.1 GPU support ... 22

7.2 FPGA support ... 23

7.3 EPI support ... 23

7.4 Final List of Bottlenecks ... 23

8. Conclusion .. 25

9. Acronyms and Abbreviations ... 27

10. References ... 28

3

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

1. Executive Summary
This deliverable identifies potential bottlenecks for the Applications (Pillars) targeted in the
eFlows4HPC project. The actual objective of this effort is to accelerate the execution of the
corresponding workflows by developing high performance realizations of selected numerical
kernels as well as storage and communication alternatives to tackle the identified bottlenecks. The
focus of the work in WP3 is on the benefits that new architectures (in the form of communication
and storage technologies and/or heterogeneous architectures) may bring to the acceleration of
key components of the workflows and, in consequence, the mitigation of the bottlenecks.

Several meetings and working sessions have been held with the Pillar partners. In addition,
collected reports, some of them POP CoE audits, for specific frameworks/models used within the
workflows have been obtained and carefully analysed. From all these meetings and reports, and
from the Workflow pillar descriptions (Deliverables D4.1, D4.2, D5.1, D5.2, D6.1, and D6.2), we
have structured all information and compiled this deliverable.

In addition to the identification of potential bottlenecks, we also provide some hints on the
optimization opportunities to alleviate these bottlenecks. This is done from the perspective of
using the additional architectures targeted in the project, namely GPUs (graphics processing units),
FPGAs (field programmable gate arrays) and EPI (European Processor Initiative) as well storage and
interconnect technologies.

This report describes the activity performed in T3.1. The report sets up the baseline for the work
of the remaining tasks of WP3.

2. Introduction
The different workflow applications, described in WP4, WP5 and WP6 (for Pillars I, II and III,
respectively), and exercised in the project, present a considerable complexity. In particular, all of
them are composed of many processes, some of them running in parallel while others are
executed sequentially. Some processes may even run in the same workflow on different machines
with distinct configurations. Therefore, searching for bottlenecks in the entire project workflows
requires careful analyses, together with a deep study on the implications of the three main
performance components: computation, communication, and storage.

In order to identify the potential compute-specific bottlenecks in the Pillars, we first define the
concept of a (computational) kernel. This represents a concrete algorithm that implements a
specific functionality in a computer system. The same kernel may have different realisations
depending on the target system where it is actually implemented, for instance a CPU (central
processing unit), a GPU or even an FPGA.

Different types of bottlenecks may appear in a workflow. Depending on the type of performance
component that causes the bottleneck, we can classify these bottlenecks as:

- Compute-specific

- Communication-specific

- Storage-specific

4

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

For compute-specific bottlenecks, we identify the kernels that produce them as the kernels that
dominate the compute time of a running workflow application. We expect that improving those
kernels by targeting new compute-specific resources (e.g., a high-end GPU or an FPGA) reduces
the execution time and/or the energy consumption of that kernel, and exerts a significant impact
on the final efficiency of the workflow. Additionally, we may find compute-specific bottlenecks not
related to a specific kernel but to the whole process. Indeed, hundreds or thousands of simulations
may be required posing a compute-specific bottleneck per se to the workflow.

For communication-specific bottlenecks, we identify data transfers between workflow modules as
indicated in the deliverables describing the workflows (D4.1, D5.1, and D6.1). Those
communication transfers may be also affected when communication occurs off premise. In that
case, we need to consider both the communication intensity and the bandwidth of the
interconnection network. Communication-specific bottlenecks are also identified within an HPC
(High Performance Computing) system, mainly when running the simulation frameworks of
models for a specific workflow. MPI communication is the preferred communication protocol
leveraged by the HPC components for most workflows and we may track communication-specific
bottlenecks down to specific communication routines in the MPI standard.

Finally, storage-specific bottlenecks may arise when large amounts of data stored in local disks
need to be accessed. In those situations, a storage-specific technology (e.g., NVRAM disks) may
help in reducing the data access time.

The work carried in Task 3.1 (which is the basis for this deliverable) included many meetings with
the Pillar partners, with lively discussions on their workflows and current knowledge of the
potential bottlenecks. The meetings were also complemented with previous (and recent) analysis
reports provided by the Pillar partners, some of them POP CoE Audits, with accurate bottleneck
identifications for the specific key components used in the workflows.

For the identified bottlenecks, during the project execution we expect to work on solutions to
attenuate and reduce the impact of the bottleneck on the workflow. These solutions come from
the combination and adoption of alternative technologies that may be used in the project.

Compute bottlenecks will be labelled through this document as CP.X.Y where X is the Pillar (I, II, or
III) and Y is the bottleneck number. The same way, communication bottlenecks will be labelled as
CM.X.Y and storage bottlenecks as ST.X.Y.

The rest of the document is structured as follows. Sections 3, 4, 5 and 6 are devoted to the three
project Pillars. For each Pillar, in the corresponding section we first identify the compute-,
communication- and storage-specific bottlenecks, and then draft possible optimizations that may
alleviate those bottlenecks in the context of the Pillars. Then, in Section 7 we provide a summary
of the insights gained from the present study and briefly discuss how the new architectures and
technologies may be used to help alleviate the identified bottlenecks. Finally, in Section 8 we close
the report with a summary of the main findings.

3. Pillar I: Reduced Order Models
The goal of Pillar I is to develop an integrated workflow for the realization of reduced order models
(ROM), from their inception to their deployment. The workflow general overview is depicted in
Figure I. This Pillar targets the simulation of complex engineering problems, with high
computational requirements, by developing a ROM that provides an accurate representation of

5

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

the original system, with a much lower computational cost, which can be then utilized in
subsequent stages of the workflow.

Figure I. General overview of the ROM workflow.

As described in deliverable D4.1, the workflow for Pillar I consists of 5 “stages”:

1. Generation of the input data.

2. Data extraction.

3. Hyper-reduction.

4. Validation.

5. Deployment.

Deliverable D4.1 identified stages 1 and 2 as those with the highest computational, communication
and storage demands, with stage 1 dominating the entire cost because of the need of performing
a large number of (mostly independent) simulations. Stage 2 involves the extraction of data via the
Singular Value Decomposition (SVD) algorithm, which implies a large level of concurrency and data
transfers.

Although a large-scale SVD is also required in Stage 3, the data generation involved in that stage
already operates on a ROM, which should significantly reduce the cost of this process. Stages 4
and 5 operate on a hyper-reduced model, further diminishing the cost of these stages. Therefore,
in the following subsections we focus on the first two stages, identifying their main bottlenecks,
and quantifying their contribution to the execution time of the workflow.

6

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

3.1 Generation of the input data (stage 1)
This stage is tackled in the workflow using KRATOS,1 an open source framework for the
implementation of numerical methods for scientific and engineering problems. The baseline
problem that underlies KRATOS, when used to generate the input data for Pillar I, boils down to
the solution of a large number of simulations (in the order of hundreds), covering the most relevant
scenarios. Each simulation typically represents a time dependent process (with more than 200
time steps). The problems to be described are nonlinear, and require an iterative solution
procedure (typically around 3 iterations per time step).

The linear systems appearing in this application are sparse, and present no special structure (e.g.,
band, symmetry, etc.) other than a symmetry in the underlying graph, nor property (positive
definiteness, etc.). In the current realization of stage 1 for the workflow underlying Pillar I, these
linear systems are solved using an Algebraic Multigrid (AMG) preconditioner in combination with
a Krylov subspace-based iterative solver. Specifically, the Pillar stack employs the AMGCL software
package2 for this purpose. This numerical tool provides backends for multicore processors as well
as GPUs on top of OpenCL, CUDA and OpenMP.

To acquire a general understanding of the dimensions of the problem, we performed a preliminary
profiling of the AMGCL backend for CPUs, using an Intel(R) Core(TM) i7-1165G7 multicore
processor. The selected testcase corresponds to a Navier Stokes problem coming from the
discretization of the fluid domain of an electrical motor cooling simulation (selected testcase for
the demo of Pillar I). This particular sparse linear system presents about 800.000 unknowns. The
GMRES method in AMGCL, combined with an ILU0 preconditioner in the same package, was
applied to the solution of the linear system. The analysis reported that the memory footprint for
the solver was 609.33 MB and that of the preconditioner was 1.61 GB. The iteration was stopped
when the relative residual of the solution was below 1.0e-9, which required 26 iterations. The
results from this analysis showed that a significant part of the execution time of the standalone
solver (65.79%) was spent reading the data from disk. In a real scenario, though, the data for the
linear systems come from a prior stage and this time is therefore discarded for the following
analysis. The second and third phases that dominated the execution time were the iteration solve
(25.85%) and preconditioner setup (8.35%), respectively. Considering only these two phases, the
execution time varied between 85.24 seconds when using a single core, 48.26 seconds for 4 cores,
and 35.89 seconds when the full socket (i.e., 8 cores) was employed. The speedup of the
preconditioner setup was practically nonexistent: 1.05 and 1.18 when using 4 and 8 cores,
respectively. The iterative solve reported a mild parallel scalability: 2.27 and 3.50 for 4 and 8 cores,
respectively.

Identified bottlenecks
[CP.I.1] Delving further into the software stack, depending on the convergence rate of the iterative
solver, in general the computational cost of stage 1 in the workflow is dominated either by the
construction of the AMG preconditioner or the Krylov subspace-based iterative solver. In the
former case, depending on the type of preconditioner that is applied, special attention must be
paid to the kernel for the sparse matrix-matrix multiplication (SpMM) and sparse triangular solve
(SpTrsv). For the latter case, we need to take into account that the selected iterative process in
Pillar I is a variant of the conventional GMRES or BiCGStab Krylov subspace methods. In

1 https://www.cimne.com/kratos/
2 https://github.com/ddemidov/amgcl/

7

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

consequence, the critical kernel in this case may be the sparse matrix-vector product (SpMV) or
the orthogonalization process involved in the GMRES. For GMRES, the kernel for the general matrix-
vector product (GeMV) that is necessary to estimate the search direction of the method can also
play an important role from the computational perspective.

[CP.I.2] From a computational point of view, the global cost is dominated by a sparse linear system
of equations, representing the Jacobian of the FEM problem to be minimized. In the case of
performing 100 simulations, each with 200 time steps and with 3 nonlinear iterations, one would
need to solve 600 times the linear system of equations per simulation (so a total of 60,000 times).
We remark that each simulation is completely independent from the others and, therefore, the
problem is embarrassingly parallel at that level.

Potential optimizations
The (compute-specific) kernels identified in the first stage (generation of the input data) are
memory-bound. This implies that any optimization strategy needs to consider very carefully the
cost of moving the data across the memory hierarchy of the computer. Communication-reduction
techniques for this type of kernels, dealing with sparse matrices, tackle this problem by a
combination of the following: 1) designing specialized data structures to reduce the overhead of
the indexing information and/or improve data locality; 2) combining different precisions for the
floating point data; and 3) eliminating synchronization points due to collective reductions (though
some of these options may come at the cost of numerical stability and impact the convergence
rate of the iterative solver.) Significant gains can also be attained via the use of alternative
preconditioners which present a better fit to the target problem. In the project, the use of FPGAs
paves the road to the exploration of customized floating point formats to store the data in memory
and perform the floating point arithmetic.

3.2 Data extraction (stage 2)
Identified bottlenecks
[CP.I.3] The baseline realization of this stage relies on the SVD to compress the original system
model into a ROM, where the accuracy of the representation is adjusted via the singular values,
which are used to truncate the decomposition to a certain point. In the current implementation,
the use of a randomized variant of this decomposition [Mar20] significantly reduces the
computational, communication and storage costs of this operation. In some detail, the randomized
SVD is obtained via 1) a couple of large-scale general matrix-matrix multiplications (GeMMs), 2)
the QR factorization of a tall-and-skinny matrix, and 3) the SVD of a small, “squarish” matrix. Taking
into account the dimensions of the operands that participate in each one of these computations,
the computational kernel that dominates this stage is the GeMM followed, to a much lower extent,
by the QR factorization. The contribution of the final SVD is negligible; see Table I.

[CM.I.1] As a starting point for the identification of the bottlenecks in this stage of Pillar I, we
implemented3 a prototype version of the randomized SVD as a PyCOMPSs script that builds upon
the dislib4 methods. The initial strategy designed for this purpose was based on the distributed

3 The evaluation of stage 2 of the ROM Pillar was performed on the MareNostrum 4 (MN4) Supercomputer. Each node
of this platform has two Intel Xeon Platinum 8160 (24 cores at 2,1 GHz each) and 96GB of main memory. More details
of MN4 can be found in https://www.bsc.es/marenostrum/.
4 See D1.1 for a description of dislib and PyCOMPSs.

https://www.bsc.es/marenostrum/

8

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

array (ds-array), which is the basic dislib data structure. A ds-array is a matrix divided into blocks
that are stored in a distributed way in a set of nodes of a computational cluster. Each block of a
ds-array is a NumPy array or a SciPy CSR (Compressed Sparse Row) matrix, depending on the type
of data used to create the ds-array. The script invokes a few dislib methods, following the order
indicated in Table I: GeMM, QR factorization, transpose, and SVD. The script was first tested with
small size matrices for correctness, and the size was then increased to assess the experimental
costs of the components on realistic values for Pillar I. This initial evaluation revealed a
performance drop when operating with an input matrix A of one million rows by 5000 columns,
and a matrix � of size 5000 by 110. The main reason for this performance decline was the dislib
method for the QR factorization, which required its input ds-array to be organized into square
blocks. Given the size of the input matrix, this implied that the largest block size was 110 by 110.
In consequence, PyCOMPss generated a considerable number of tiny tasks, yielding a significant
overhead due to task management.

Table I. Operations in the computation of the randomized SVD in stage 2 of the ROM Pillar. In the problems to be solved in this

Pillar, the dimension n is in the order of millions to tens of millions (n ~ O(106-107)) while m is in the order of few thousands (m ~
O(103)). The third problem dimension, k, needs to be dynamically adjusted during the computation process but it is usually in the

range of a few hundreds.

Computation Kernel Theoretical cost
(in floating point operations)

1. Generate random �; compute Y=A � GeMM 2nmk

2. Compute truncated QR factorization Y =
QR

QR O(nk2)

3. Compute B = QT A GeMM 2nmk

4. Compute the SVD B=UBSVT SVD O(mk2)

5. Compute the left singular vectors U = QUB GeMM O(nk2)

As part of our initial effort to identify the actual bottlenecks in this stage, we refined the prototype
implementation for the randomized SVD in order to leverage the distributed array and the dislib
methods in steps 1, 3 and 5 (including the computation of the transpose) and to use local
operations for steps 2 and 4. In order to invoke the local operations, in this second version the
distributed data was gathered in one cluster node, the corresponding method (QR or SVD) was
invoked locally, and the data was again converted to a ds-array for the subsequent step. While this
fan-in/fan-out of data introduced some communication overhead, the strategy proved to be much
more efficient, and we were able to compute the randomized SVD of matrices with one million
rows and 5000 columns in 1-2 minutes; and for matrices with 10 million rows and 5000 columns
in less than 4 minutes.

As mentioned previously, we observed some overhead sources in this stage when gathering and
scattering data from multiple computing nodes in the randomized SVD script. These overheads
occur when changing from the distributed format of the ds-array to a centralized format (a single
NumPy array). In its current implementation, the gathering implies a number of data transfers
from multiple nodes to one node, followed by a sequential NumPy block operation to convert the

9

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

blocked list into a single NumPy array. This operation is currently encapsulated in the “collect”
method of the ds-array.

[ST.I.1] In order to exchange data in memory between nodes, PyCOMPSs serializes the tasks’
output objects into files. The profiling performed with the initial tests of the randomized SVD script
allowed us to detect an issue due to the data serializations that PyCOMPSs performs. In particular,
we observed an increase in the serialization times when generating random ds-arrays using as
temporary storage the local disk in the nodes. This problem did not appear when using the shared
file system.

Potential optimizations
The profiling of the current script exposes some bottlenecks in step 2, both for the
gathering/distribution of data and the QR itself, and in the transposition that appears prior to step
3. We have identified the following potential optimizations to alleviate these bottlenecks (only
computational bottlenecks are listed below):

- Optimization of the distributed QR by implementing a version for tall-and-skinny matrices
in dislib.

- Extension of the dislib routine for matrix multiplication to support transposed matrix
operands.

- Reformulation of the gathering as a reduction operation, enabling dislib to perform the
block operation in parallel. We foresee a solution based on the reduction decorator of
PyCOMPSs (@reduction) that performs the corresponding operation as a set of tasks, first
operating at node level and later between nodes, reducing the number of communications
and exploiting the locality, while at the same time the operation is performed in parallel.

At this point we want to mention that a more challenging optimization is to replace the complete
calculation of stage 2 (data extraction) with a module based on deep neural networks, possibly via
autoencoders. The evaluation of the potential of this approach is still in a germinal stage, to the
point where it is too early to identify potential bottlenecks. It is however interesting to remark
that, in many cases, we use the SVD as a first step of reduction, and we then leverage the data
projected onto the SVD basis to train the autoencoder. This implies that the “heavy lift” in the
autoencoder reduction is still done with the linear SVD kernel allowing to take advantage of the
optimization described just above.

4. Pillar II: Dynamic and adaptive workflows for
climate modelling
The use case defined in Pillar II is divided into two workflows (see Figure II). The first workflow is
the ESM (Earth System Model) Dynamic (AI-assisted) workflow whereas the second one is the
Feature Extraction and Statistical Analysis workflow. In some detail, the first one leverages specific
software packages from the climate science domain, in particular OpenIFS and FESOM2, in order
to conduct climate simulations. In consequence, the identification of bottlenecks for this workflow
is focused on OpenIFS and FESOM2, as they represent the most compute-intensive parts.

10

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

Figure II. General view of the dynamic and adaptive workflow for climate modelling.

The second workflow defines two use cases with input sources reflecting two distinct application
scenarios. The first use case represents the base scenario where extraction and analysis of Tropical
Cyclone (TC) detection and tracking information are applied on the output of a single climate
model, specifically CMCC-CM3. This model is defined in the Community Earth System Model
(CESM) project, with the CESM ocean component replaced by the NEMO physical core, version
4.0. The second scenario considers large volumes of data from centennial CMIP6 products at the
highest horizontal resolution available and with a temporal frequency of at least 6 hours. In
summary, CMCC-CM3, NEMO, DA, and TC are used in this workflow.

In the following, we discuss the bottlenecks identified in each workflow.

4.1 ESM Dynamic (AI-assisted) Workflow
4.1.1 OpenIFS
OpenIFS is the open access to IFS (Integrated Forecasting System) specifically designed for research
and teaching. OpenIFS provides a numerical weather prediction tool that operates with medium
range to seasonal timescales. OpenIFS is written in Fortran with some small parts of the code
written in C. The software leverages MPI and OpenMP and currently there is no support for GPUs.

Identified Bottlenecks
OpenIFS was recently analyzed in [OPENIFS-BSC]. We next summarize the main findings from that
report:

- [CP.II.1] According to the general profiling, OpenIFS presents unbalanced computations in
the following modules: physical calculations, first block of transposition/transformations,
and gnorm/spnorm calculations.

- [CM.II.1] OpenIFS also exhibits unbalanced collective communications, with a large
number of isend/recv, irecv+wait_any calls.

- [CM.II.2] In addition, the report identifies a synchronization point where all the processes
need to agree on whether or not to continue the simulation (sigcheck).

11

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

OpenIFS can be combined with NEMO. In this case the report identifies two additional bottlenecks:

- [CM.II.3] A big number of send/recv calls with small useful duration phases.

- [CM.II.4] A large number of Allreductions in the PCGSolv function.

Potential optimizations
The following potential optimizations are proposed in the report:

- Introduce asynchronicity in the calculation of the sigcheck signal, overlapping the execution
of the current iteration with a broadcast of the signal from the previous one.

- Introduce asynchronicity in the norm calculations, overlapping the norm calculation
corresponding to one iteration with the computations for the next one.

- For the particular case of NEMO, the number of allreductions in PCGSolv can be diminished
by relaxing the rate of convergence check in addition to using a SOR (successive over-
relaxation) method.

4.1.2 FESOM2
FESOM2 (Finite-volumE Sea ice-Ocean Model) is a multi-resolution sea ice-ocean model that solves
the motion equations for unstructured meshes. The performance of FESOM2 has been analyzed
in different studies, including some preliminary studies between BSC-ES and ECMWF. Here we first
focus on the results from the report by the Earth model performance analysis group at BSC-ES
[REP-FESOM2].

Identified bottlenecks
[CM.II.5] The FESOM2 code is divided into three phases: init, init2 and iterative process. The init2
phase does not scale with the number of processors, mainly due to irregularities in the
communications that introduce serialization. Indeed, using more processors in this phase increases
its execution time.

[CM.II.6] Multiple iterations are performed in the iterative process phase. Each iteration consists
of an Ocean (sub)phase and an Ice (sub)phase. There is a large collective communication that
consumes 5% of the time and does not scale when a larger number of processors is used.

[CM.II.7] In the Ocean phase there is a load imbalance since some subdomains contain more layers
than others. In addition, the Ice phase has a large number of fine grain MPI communications. This
represents a communication bottleneck since computation is serialized and asynchronous
communication is not possible.

An evaluation using the PAPI (Performance Application Programming Interface) tool revealed the
following additional data. The instantaneous parallelism of the time-step phase comprises, on
average, 36% of the time. This means that only 36% of the MPI parallel resources are doing useful
work (e.g. not waiting for communication). The load imbalance of the ocean calculation produces
a reduction of the parallelism when communication is performed. Also, the low granularity of
computation between communications affects the Ice phase with low parallelism. This results in
the useful IPC (instructions per cycle) rate being in general lower than IPC. Indeed, the
performance of the Ice areas is affected dramatically, while the ocean areas experience an impact
when close to the communications.

12

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

These scalability problems are also analysed in [Koldunov19]. The study in that work concludes
that FESOM2 suffers from parallel scalability issues as bottlenecks arise from the saturation of the
parallel communication after the number of mesh partitions becomes smaller than a certain
threshold of surface vertices per compute core, depending on the model and on the hardware
employed.

The components of the ocean circulation models responsible for limiting scalability have been
identified to be the solver for the external (barotropic) mode and the sea-ice model. Both
represent 2D stiff parts of the solution algorithm and require either linear solvers (usually iterative)
or explicit pseudo-time-stepping with very small time steps. Both approaches are not particularly
computationally expensive but introduce numerous exchanges of 2D halos per time step of the
ocean model. Therefore, the bottlenecks are due to communication and not to computation. In
addition, current CPU architectures appear to be well suited for nearly all 3D computational parts
of FESOM2.

[CP.II.2] Currently FESOM2 runs on CPU. Porting other compute-intensive kernels beyond tracer
advection to GPUs, EPI and even FPGAs may improve performance of the workflow.

[CPI.II.3] One important aspect of this workflow is the high number of simulations that need to be
performed in the HPC system. This entangles a computation-specific bottleneck.

Potential optimizations
From the two analyses of FESOM we can derive the following possible improvements for the
mitigation of bottlenecks. These improvements point in the direction of increased memory
bandwidth, lower communication latency, and more efficient file systems. Therefore, it is vital to
choose the “optimal” hardware. Suboptimal scaling of the sea ice combined with a sequential
arrangement of sea-ice and ocean steps results in an inefficient utilization of the computational
resources and indicates a clear direction for improvement. This, together with a better, scalable,
parallel I/O, is the direction for future model code development to enable high-resolution climate
simulations with reasonable throughputs.

The following recommendations are listed in [REP-FESOM2]:

- Review the broadcast communication to avoid the irregular pattern that produces load
imbalance in the communications (MPI study).

- Review initialization algorithm to avoid the irregular pattern which produces load
imbalance in the communications (Init2 study).

- Evaluate the possibility of OpenMP to avoid serialization, the reduction of the number of
MPI communications and low computation granularity due to the several communications
during the Ice calculation (MPI study).

- Evaluate the possibility of the reduction of the MPI communications during the Ice
calculation if OpenMP is not a possibility.

- Review the domain decomposition algorithm to improve the load balance in the ocean
calculations (MPI study).

- Since the bottlenecks presented in the previous points result in low parallelism of the
model execution, the computational performance of the model is affected, for example,
reducing the IPC efficiency (PAPI counter study). In case any of the suggested optimizations
explained before is introduced, the parallelism (and subsequently the computational
performance) will be improved at the same time.

13

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

- Review the locality of the two areas with low IPC and high cache misses to improve the
performance of a computation phase (PAPI counter study).

- Review the dependencies in the calculation loops for the area of calculation with low VEC
(PAPI counter study).

As commented above, One important aspect of this workflow is the high number of simulations
that need to be performed in the HPC system. This entangles a computation-specific bottleneck.
One approach envisioned in the project to tackle this issue consists in developing components or
functionality in order to enhance ensemble members simulation runs with the capacity to prune
members that do not add useful information to the whole simulation. The idea is to make a more
efficient use of the computational and storage resources by performing a smart (AI-driven) pruning
of ensemble members (and releasing resources accordingly) at runtime. Based on this idea, certain
Neural Network (NN) computational kernels, such as GeMM, convolutions (CONV), and activation
functions may become potential compute-specific bottlenecks that could be addressed within the
project.

4.2 Feature Extraction and Statistical Analysis Workflow
4.2.1 NEMO
NEMO stands for “Nucleus for European Modelling of the Ocean” and is a modelling framework
for research and forecasting services in ocean and climate sciences. The NEMO ocean model has
three major components (also known as core engines):

- NEMO-OCE models the ocean dynamics and solves the primitive equations.

- NEMO-ICE models sea-ice dynamics, brine inclusions, and subgrid-scale thickness
variations.

- NEMO-TOP models the online and offline oceanic trace transport and biogeochemical
processes.

The NEMO model is a critical computing component of the Earth System Model (ESM) workflow
foreseen in the context of Pillar II, as it represents one of the members included in the CMCC-CM3
model. NEMO is supported by a large Community while several optimizations are being developed
in parallel. However, in order to discuss the bottlenecks in this component, we will stay with the
official release of NEMO (v4.0). At this point, we note that NEMO has been previously analysed in
other projects, such as IMMERSE5, IS-ENES3 [ISENES-NEMO], PRACE [PRACE-NEMO], and by the
Performance Optimisation and Productivity Centre of Excellence in HPC (POP) [POP-NEMO]. In this
section of the deliverable, we summarize the results in these documents that are of interest to the
eFlows4HPC project.

The baseline version of NEMO is single-threaded and uses MPI for communication. From this
starting point, several optimizations have been recently added to NEMO, following the analyses
and optimization efforts performed in [ISENES-NEMO] and [POP-NEMO]. The first optimization
deals with single core performance. In this optimization, the computation is divided to obtain one
MPI domain per node, and each domain is further divided into tiles. The dimension of these tiles

5 https://immerse-ocean.eu/

14

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

is determined according to the node cache geometry in order to avoid data eviction from the
processor cache hierarchy, yielding a better exploitation of data locality.

NEMO v4.0.2 has been also profiled and analysed in MareNostrum4, and the results are collected
in the POP report [POP-NEMO]. That work provided insights on the communication overheads that
constrain NEMO’s efficiency. In particular, the north fold was identified as one of the main
constraints to the model scalability. The report proposed acting on the granularity of the dynamic
solver as a way to reduce idle periods during the execution of NEMO.

The analysis of the communication overheads has also been addressed in [ISENES-NEMO]. Two
optimizations were applied there. First, point-to-point primitives, used in NEMO routines to
update the halo region before performing computation on the generic point using values of its
neighbours, were replaced by MPI3 standard collective communications. Second, the frequency of
exchanges was reduced by increasing the dimension of the halo region.

Identified bottlenecks
[ST.II.1] For the NEMO model, there is one clear potential bottleneck in the communication
infrastructure. The XIOS library (XML-IO-Server), used for I/O, stores the output of diagnostics and
other data produced by climate component codes into files that are then passed to temporal and
spatial post-processing modules that operate on this data. XIOS is extensively used in NEMO and
is based on the server concept where I/O tasks are leveraged and performed asynchronously. Thus,
the diagnostics in NEMO were offloaded from the model and run in parallel with ocean dynamics.
Efforts in this direction are underway in order to port these diagnostics to the GPU, whereas the
rest of NEMO runs completely in CPU.

[CP.II.4] Among all the components building the NEMO model, two ocean tracers routines
(advection6 and diffusion7) are the most frequently executed. The advection kernel computes the
current trend due to total advection of tracers using different schemes (e.g., the MUSCL or
Monotone Upstream-centered Scheme for Conservation Laws), and adds it to the general tracer
trend. The diffusion operator computes the horizontal tracer diffusive trend and adds it to the
general trend of a tracer equation.

The number of passive tracers can in the order of dozens, especially when the biogeochemical
component is active. In this regard, the shared memory parallelization of the advection and
diffusion kernels could raise the overall performance. Although the MPI support has been
improved (replacing point-to-point to collective primitives), the ocean tracers routines still
represent a serious compute-specific bottleneck.

[CM.II.8] A prototype GPU implementation has been reported to achieve a 2.5x speedup factor
when compared to a CPU-only implementation. However, in a MPI + multi-GPU environment
performance does not scale and is similar to a MPI CPU-only implementation. This is mainly due
to the needed CPU-GPU transfers when communicating GPUs among them, representing a
communication bottleneck.

[ST.II.2] The CMCC-CM3 climate model will produce massive outputs of data that need to be stored
for being processed by subsequent operations in the workflow. In addition, global data produced
by the workflow needs to be accessed frequently and may also increase in size. Given the large
size of the output (tens of gigabytes), this may create a potential storage bottleneck.

6 http://forge.ipsl.jussieu.fr/nemo/browser/NEMO/trunk/src/OCE/TRA/traadv_mus.F90
7 http://forge.ipsl.jussieu.fr/nemo/browser/NEMO/trunk/src/OCE/TRA/traldf_lap_blp.F90

15

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

Potential optimizations
Several optimizations can be applied to NEMO. At the function level, OpenMP can be used in order
to exploit the internal parallelism of specific kernels, in particular, the two tracer functions
identified. At a complementary level, a more advanced parallelization approach can be applied to
the NEMO model in order to improve its performance. Indeed, the tile concept used in NEMO
fosters parallelization, as tiles are totally independent of each other. Thus, MPI and OpenMP can
be used to implement a hybrid-parallel solution, at the system level and the node level
respectively.

A second potential improvement consists in migrating NEMO to run on GPUs. Indeed, there is an
effort within the NEMO Community to leverage GPUs. This work relies on the adoption of a Domain
Specific Language (DSL) for climate and weather modeling via PSyclone (developed by STFC) or
DAWN (developed by MeteoSwiss, CSCS, ETHZ, and Vulcan). With this type of approach, most of
the community can stay with the original code and not worry about new programming languages
such as CUDA for GPUs. However, this path potentially sets a performance limitation since not all
GPU features are guaranteed to be exploited by the DSL. Indeed, NEMO can be ported partially to
GPU, specifically using CUDA, and adjusting the implementation to the underlying architecture of
the target GPU. This is the case of the two identified tracers routines, which can be implemented
and optimized on CUDA.

The limitation in the use of multi-GPU systems (CPU-GPU memory transfers) can be alleviated by
the use of the NVIDIA Collective Communication Library (NCCL). This library is optimized for
collective communications, as those used in NEMO, and allows for efficient direct access to GPU
memory without the intervention of the CPU. Therefore, this solution can mitigate the problem
identified in the current multi-GPU implementation. An alternative strategy consists in leveraging
CUDA-aware MPI implementations, which can also avoid the use of CPU memory as a temporal
buffer resource for communication between GPU devices.

For storage, new technologies such as NVRAM may help alleviate the bottlenecks for the output
of the CMCC-CM3 climate model and for the frequent retrieval of global information of the Feature
Extraction and Statistical Analysis workflow.

In this part of the workflow, the project will also aim to deploy ML-based schemes (e.g. based on
NNs) for TC detection and tracking. This also entangles the necessity to consider NN-specific
kernels (GeMM, Convolutions, activation functions) as possible compute-specific bottlenecks. The
project will care about efficient implementations of these kernels on specific devices (GPUs, FPGAs
and EPI).

5. Pillar III: Urgent Computing
Pillar III deals with Urgent Computing (UC) related problems. These are defined as problems that
need HPC/HPDA (High Performance Data Analytics) systems immediately after an emergency
situation, and typically combine complex edge-to-end workflows with capacity computing under
strict time-to-solution constraints. Within the project, two UC applications are targeted: Tsunamis
and Earthquakes. Both present the same sequential phases:

1. Pre-processing phase.

2. Simulation phase.

3. Post-processing phase.

16

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

In the pre-processing phase an ensemble of possible sources is defined based on seismic data
assimilation and earthquake parameter estimation. In the simulation phase, individual cases are
simulated for all the scenarios in the ensemble. Then, in the post-processing phase the simulation
results are processed to produce probabilistic forecasts, and affectation maps. In both UC
applications, the compute intensive parts appear in the simulation phase. We next describe the
identified bottlenecks for each use case.

5.1 Tsunamis (PTF/FTRT)
The PTF/FTRT workflow is depicted in Figure III. The Tsunami use case relies on simulations
performed using Tsunami-HySEA. This is a numerical model of the HySEA family specifically
designed for quake-generated tsunami simulations. The model relies on GPUs to obtain a faster-
than-real-time (FTRT) realisation. The model leverages CUDA (custom kernels) to implement an
explicit numerical solver, involving small matrices, and does not rely on any linear algebra libraries.
MPI is leveraged to enable multi-GPU simulations. Tsunami-HySEA is embarrassingly parallel and
a stencil-type computation is performed on each GPU. Data locality within the GPU is exploited at
the GPU block granularity.

Figure III. Schematic representation of the PTF/FTRT workflow. White boxes are building blocks already implemented. Yellow

boxes are building blocks planned to be developed.

Two audits were recently performed within POP for the Tsunami-HySEA model [POP-HySEA1],
[POP-HySEA2]. We next list the observations from the first audit:

17

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

- A synchronous MPI communication between processes was identified as the main limiting
factor for scalability.

- Scalability issues, mainly due to load unbalanced, produce MPI waiting time.

- Point-to-point communications are limited by the network bandwidth.

- CUDA parallelization is fair but scaling problems appear because of the overhead resulting
from launch kernels.

Therefore, the model was adapted to introduce asynchronous communications in order to overlap
them with computation.

In the second audit, a GPU kernel was identified as a bottleneck. This kernel was improved and the
bottleneck removed. The main observations from this second audit were:

- MPI point to point communications are overlapped with execution of kernels.

- MPI allows direct transfer to the devices (GPU).

- Communication bottlenecks appear due to inefficient GPU kernels.

With this second audit, specific kernels were identified and optimized, thus removing the
remaining communication bottlenecks.

Identified bottlenecks
[CP.III.1] With the two reported analyses, the Tsunami-HySEA is a well balanced and optimized
model running on multi-GPU systems. Therefore, there are no clear compute-specific bottlenecks
that can be addressed within the model itself. However, the number of simulations to perform in
the PTF/FTRT workflow will be significant (from hundreds to thousands) and may induce a
compute-intensive bottleneck, depending on the availability of HPC resources.

[CM.III.1] A potential communication-specific bottleneck in the PTF/FTRT workflow may appear in
the transmission of the results from Block #3 to Block #5. The data transfers can be expensive,
generating a significant communication overhead. Therefore, this is a potential source of
bottlenecks in the Tsunami simulation.

[ST.III.1] The output produced by the Tsunami-HySEA may also impose a storage bottleneck due
to its size and the large number of simulations to perform.

Potential Optimizations
Machine Learning to reduce Simulation Workload

The set of simulations performed in Block #3 (Tsunami simulation) of the PTF/FTRT workflow (see
Figure III) can produce large amounts of stream data (simulation results), characterized by high
volume and high generation rate (i.e., high frequency of simulations). This may require that the
simulation aggregation task performed by Block #5 (Simulations merging) leverages machine
learning (ML) algorithms for analysis of simulation output adopting efficient and scalable solutions
to satisfy the required short-time constraint imposed by the Tsunami use case.

In fact, the simulation results, produced by Block #3 in the form of data streams, can be analysed
by a parallel machine learning algorithm to keep the pace with the rate of generated data streams.
In particular, a frequent pattern algorithm could be used to analyse the simulation results and
detect the frequent patterns hidden in the data very quickly, thus discovering the knowledge
models in a very short time. Conversely, a frequent pattern is a set of items, subsequences, or

18

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

substructures that occur frequently together (or strongly correlated) in the data set. This could
provide several benefits and additional insights to the tasks that are executed in Blocks #4 and #6.
For example, assuming that simulations are run by tuning several input settings, frequent itemsets
in the simulation results may correspond to some patterns that are invariant with respect to the
different simulations. Typically, we may have hundreds of simulations (about 400 or 500).
Therefore, although the simulations exploit parallelism at some degree, the total execution time
may be high. In consequence, the use of a machine learning strategy to reduce the number of
simulations without losing accuracy may present an optimization opportunity.

Considering the specific case we are dealing with, Block #3 of the PTF/FTRT workflow produces
simulation results in the form of data streams. We can integrate a pattern mining module (PM,
Pattern Miner) in this architecture to discover (i) frequent items and (ii) frequent itemsets from
such data streams. The first task, namely frequent-item discovery, is very popular both for its
simplicity and because it is often used as a subroutine to discover the frequent itemsets: its goal is
to find, in a sequence of items, those whose frequency exceeds a given threshold min_sup. The
second task consists in the discovery of frequent itemsets defined as a set of distinct items
appearing together (or concurrently appearing) in a number of transactions whose frequency is
equal or higher than min_sup. This task can be severely time-consuming, since the number of
candidates is combinatorial with the size. The usual technique is to first discover frequent items,
and then build candidate itemsets incrementally, exploiting the Apriori property, which states that
an itemset can be frequent only if all of its subsets are also frequent. This becomes a crucial issue
in our proposed machine learning module because, as previously mentioned, Block #3 may involve
hundreds of simulations, computed sequentially or in parallel, thus producing high data volumes
(simulation results) at high generation rates.

Potential improvement (Communication-related)

To speed up the transfer of data that compose the output of Block #3 to Block #5 for data
simulation merging, data transmission can be done in streaming, by exploiting in-memory storage
and bypassing database reading/writing just during this phase. However, the output data from
Block #3 are simulation results that can be also used by Block #4. For this reason they still need to
be stored in the simulation database. Because of this, Block #3 or Block #5 write these data in the
Simulations DB. For example, after it merges simulation data, Block #5 just could send its output
to Block #6. In this way, secondary storage access will not affect the speed of this computation
phase, because it is done in parallel with the operations in Block #6. By streaming data coming
from the simulation execution, the flow of data generated by various simulations can be managed
and collected, overlapping simulation computation and data communication. By using stream
processing techniques, data streams can be processed, stored, analysed, and acted upon as if they
were generated in real-time. This approach may introduce concurrency between the execution
and communication steps avoiding the serialization of those operations and minimizing the
interactions between operations of Block #3 and Block #5.

If the streaming approach is considered, the computation of Block #3 and Block #5 can be seen as
a Map-Reduce step that exploits parallelism both in simulation execution (map phase) and in
simulation results merging (reduce phase). Map-reduce provides a general partitioning and
processing mechanism to distribute aggregation workload across different processors, thus it
could be appropriate for the HPC platforms we are considering. According to this strategy, Block
#3 can be implemented as a set of mappers, which execute simulations from the input data in
parallel, whereas Block #5 can be implemented as a set of reducers, which merge simulation

19

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

results. To be aligned with the project, this can be implemented with the DDS library, which
implements a spark-like syntax on top of PyCOMPSs.

MonteCarlo to reduce the number of simulations

The number of simulations in the PTF/FTRT workflow can be reduced using a MonteCarlo method
to steer the selection of a reduced number of the simulation scenarios. This may need to be
embedded into an iterative refinement process, with several steps required for convergence.

5.2 UC Integrated Services for EarthQuakes (UCIS4EQ)
Figure IV illustrates the workflows scheme for the earthquake use case (UCIS4EQ). Most of the
compute intensive part is performed in Block #4 (HPC simulations) running on HPC infrastructure.
Full waveform modelling and inversion simulation is performed by the SALVUS suite. The
remaining blocks in the UCIS4EQ workflow are light-weight compared to Block #4, and perform
acquisition, preparation of data, and postprocessing. Therefore, they do not represent a potential
compute bottleneck.

Figure IV. Schematic representation of UCIS4EQ workflow. Gray boxes correspond to building blocks already deployed in external

servers or in the cloud. The blue box is deployed in an HPC facility. The pink box represents a building block needing data
streaming deployment.

The SALVUS suite is proprietary software from Mondaic. The suite is optimized for HPC systems
and can run either on CPU or GPU, using MPI as communication infrastructure between processes.
SALVUS performance in GPUs has been profiled in POP [POP-SALVUS]. The following observations
were provided in that report:

- Good weak scaling behaviour on the initial case set, with little idle times per GPU.

20

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

- No disadvantage experienced when using the bigger per GPU test case sizes.

- Three global synchronizations per iteration where computation overlaps reasonably well
with the MPI communication.

- One of the compute-intensive kernels requires a “sufficiently large” workload to hide
communication.

The following recommendations were provided:

- Check if the number of synchronizations per iteration can be reduced as they may cause
communication overlap to fail at a higher scale.

- Run a production-size case and check whether the MPI process count becomes a noticeable
problem.

- Compare performance of different meshes in terms of complexity and their influence on
load balance.

- Run with I/O.

Given the observations in this report, and because of the proprietary nature of SALVUS, we do not
identify potential compute-specific bottlenecks. We observe though that communication-specific
bottlenecks may arise within the SALVUS suite for a production-size case.

Identified bottlenecks
[CP.III.2] Within UCIS4EQ workflow, Block #7 (MLESmap) will rely on NN models. This does not
represent a compute-specific bottleneck as the NN training will be performed off-line. However,
they may affect Block #4’s previously identified compute-specific bottleneck since the output of
Block #7 will be the input for the uncertainty quantification stage and will provide real-time
affectation information prior to the availability of the simulated results obtained in Block #4.
Therefore, we must regard Block #7 in general, and the use of NN in particular, as a potential
attenuation factor for the Block #4 compute-specific bottlenecks in the UCIS4EQ workflow.

[CM.III.2] The UCIS4EQ workflow has two critical points where communication-specific
bottlenecks may appear. They arise because several types of systems used in the workflow are not
connected tightly. The first point is between blocks #3 and #4. Block #3 (source building) prepares
input data for the HPC simulations. This block is not performed at HPC premises and, therefore, its
output data needs to be sent to the HPC system where the simulations take place. The amount of
data ranges between 1 GB and up to 15 GB in some cases. Thus, the transfer time of this data may
represent a communication-specific bottleneck.

Similarly, the output data resulting from the HPC simulations at HPC premises need to be sent to
non-HPC systems where data is post-processed in blocks #8 (Results postprocessing) and #9
(Gathering). In this case, the data can occupy tens of GB.

The remaining communication needs within the UCIS4EQ do not represent a bottleneck as they
are performed within the same system and/or have much lower file sizes to transfer.

[ST.III.3] The UCIS4EQ workflow relies on HPC simulations (block #4), performed in the HPC facility,
which are those that need the largest files to be used/produced (either as input or as output). The
dimension of these output files may impose a storage-specific bottleneck.

[ST.III.4] In addition, UCIS4EQ relies on long term storage systems (DB and B2SAFE) where static
and dynamic data are stored and retrieved. Dynamic data (data state along the workflow) does

21

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

not represent a potential bottleneck for storage since its size is low. However, static data (history
information, pre-trained NN models, output data produced by simulations) may represent a
storage-specific bottleneck.

Potential Optimizations
A path to alleviate the communication-specific bottleneck around Block #4 (at its input and at its
output) is to conduct block #3 (preprocessing) and blocks #8 and #9 (post-processing) in the HPC
infrastructure. With this, the transfer of data will be performed within the HPC network and its
higher bandwidth and lower latency will significantly reduce transfer time. Once this is achieved,
other optimization strategies can be considered. One option is optimizing data partitioning and
performing parallel data communication together with Map-Reduce strategies in the interaction
between all these blocks. Additionally, the use of faster storage technologies (e.g. NVRAM) may
reduce bottlenecks in the HPC system for the UCIS4EQ simulations.

6. All Pillars
In addition to the ML/NN specific compute-intensive kernels [CP.X.1] for CONV, GeMV, GeMM,
depending on the type of NN that is more appropriate for each individual Pillar, we have identified
two potential bottlenecks for communication and storage when dealing with NN training.

[CM.X.1] As we will rely on an HPC system with tens or hundreds of nodes, we will take advantage
of a distributed training process. In this situation, it is of paramount importance to ensure the
effectiveness of such distributed processes via an appropriate handling of synchronization and
communication tasks. In this sense, an AllReduce communication is typically used in a distributed
training process relying on data parallelism.

[ST.X.1] The second bottleneck stems from the fact that input data set for the training process
needs to be partitioned and retrieved from disk into the computing nodes prior or during the
training process. Proper access to the dataset will be also key for achieving an efficient training
process.

7. Discussion
In this section we first compile all the identified bottlenecks from the workflows to then discuss
the suitability of using heterogeneous architectures, communication technologies or storage
technologies to tackle such bottlenecks.

Figure V displays a summary of the identified bottlenecks. Compute-related bottlenecks are shown
there in green, communication-related bottlenecks in blue, and storage-related bottlenecks in
orange. The bottom part of the figure shows all the bottlenecks identified in the different
simulation frameworks and models (KRATOS, Randomized SVD, FESOM2, OpenIFS, NEMO,
Tsunami-HySEA, and SALVUS). No clear bottlenecks were identified for Tsunami-HySEA because
the application is fully optimized and embarrassingly parallel. The same issue applies to SALVUS,
in this case also because this is part of proprietary software and we have no access to it. On top of
each framework we show, for each pillar, bottlenecks identified at workflow level.

The fact that all workflows rely on hundreds of compute-intensive simulations for the input
generation phase is of particular interest. This represents an orthogonal compute-intensive

22

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

bottleneck for all workflows. Indeed, the three pillar workflows plan to address these overheads
via the use of NNs and machine learning (ML) algorithms for effective prediction and pruning of
ensemble members, though following a different approach in each case. In the top part of the
figure, we highlight this fact by showing some of the most demanded types of operations in
ML/NN. Specific kernels appearing in the pillars will need to be implemented efficiently to prevent
bottlenecks.

Figure V. Bottlenecks identified for the three Pillars as a result of the work performed in task T3.1. The bottlenecks are classified as

compute-intensive, communication and storage using different colors: green, blue and orange, respectively. The figure also
specifies the current support for each framework/model.

7.1 GPU support
Figure V also lists the current architectures currently supported by the simulation
frameworks/models. For instance, neither FESOM2 nor OpenIFS use GPUs in their computations.
This offers an opportunity to alleviate compute-intensive bottlenecks.

Similarly, although NEMO has some side implementations with GPUs (using a DSL), the target
version within the project has no GPU support. Thus, the workflow for Pillar II may benefit from
an extensive use of GPU within their frameworks. It will be an interesting exercise to dig deeper
into the two identified kernels in NEMO and assess how they behave when ported to GPU using
CUDA.

The two frameworks/models for Pillar III (Tsunami-HySEA and SALVUS) use GPUs for the
computations. Indeed, in both cases GPUs are highly utilized in an efficient way and no bottlenecks
were reported.

Finally, we note that GPUs can be used for the development of NN models for the three pillar
workflows. GeMM and CONV operations can run two to three orders of magnitude faster than the

23

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

same operation executed on CPUs. Therefore, it will be vital for the project to leverage GPUs for
the training process of NN models for the pillar workflows.

7.2 FPGA support
From Figure V we can appreciate that none of the workflows use FPGAs in any stage. This is a clear
sign that FPGAs are not yet considered a first-class citizen in HPC. However, in some situations, the
use of FPGAs may provide benefits for the workflows, probably not in terms of raw performance
but, being a highly energy efficient architecture, in performance-per-Watt.

As a first possibility, the workflow for Pillar I relies on the AMGCL library within KRATOS for sparse
matrix-matrix and matrix-vector multiplications as well as sparse triangular solve (SpMM, SpMV,
SpTrsv). FPGAs are rather efficient when the problem to solve is irregular, and sparsity indeed
introduces some type of irregularity in memory access patterns. FPGAs will be explored within
Pillar I for the efficient implementation of the SpMM, SpMV, SpTrsv kernels. This will be combined
with the use of mixed precision arithmetic, which can be easily customized and adapted in an
FPGA.

Alternatively to the use of FPGAs in Pillar I, the other two pillars may benefit from the use of FPGAs
when implementing their NN models. Indeed, in both cases, a trained NN model will be inferred in
order to prune running simulations. This inference process can be performed in an FPGA in a
considerably more energy-efficient manner. Within this project we will tackle the use of FPGAs for
the inference with NNs applied to the pillar workflows.

7.3 EPI support
The availability of commercial RISC-V instruction set architecture (ISA)-based processors with
complete functionality is very limited or even nonexistent at the moment. This is especially the
case for processors equipped with SIMD floating point units (FPUs) or hardware vector
accelerators. It is difficult to foresee how fast this situation will change during the development of
the project. For this reason, we plan to rely mostly on software simulators and FPGA-enabled
designs in order to explore the performance and energy efficiency of the RISC-V ISA-based
processors.

We consider compute-intensive kernels to be especially interesting candidates to investigate on
the RISC-V designs. These include, for example, GeMM and SVD for Pillar I. In addition, NN-related
kernels will be ported to EPI in order to provide support for Pillar II and Pillar III developments.

7.4 Final List of Bottlenecks
Table II summarizes the identified bottlenecks in each of the project Pillars. The Table also shows
the type of bottlenecks and the potential optimization that can be applied within the project to
alleviate them. Applicability of different heterogeneous architectures (GPU, FPGA, EPI) are
indicated at the bottleneck level. Also, the complexity degree (Low, Medium, High) and potential
benefits (Low, Medium, High) are specified for each bottleneck.

24

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

Table II. Final summary of bottlenecks identified for the three Pillars.

Pillar/
Use
Case

Bottleneck
Type

Bottleneck/Optimization Applicability Complexity
(L/M/H)

Benefit
(L/M/H)

GPU FPGA EPI Storage Network

Pillar I
ROM

CP.I.1 AMG preconditioner / SpMV / SpTrsv
GMRES / GeMV
GPU: Accelerate memory-bound operations
via GPU
FPGA: Use customized precision

Yes Yes High High

CP.I.2 Hundreds/Thousand of simulations
Train a Neural Network/Machine Learning
model and perform simulation pruning

Yes Yes High High

CP.I.3 Randomized SVD: GeMM / QR
GPU: Accelerate computation
EPI: Use wide SIMD (vector) instructions

Yes Yes Medium Low

CM.I.1 Gathering/Scattering data from multiple
computing nodes in randomized SVD
Improve transition from distributed to
centralized format in ds-array

 Yes Medium Low

 ST.I.1 Serialization of data in PyCOMPSs
Improve random generation of ds-array

 Yes Medium High

Pillar II
OpenIF

S

CP.II.1 Unbalanced computations

CM.II.1 Unbalanced Collective Communications
Introduce OpenMP-based parallelization

 Yes High High

CM.II.2 Process synchronization
Introduce OpenMP-based parallelization

 Yes High High

CM.II.3 OpenIFS-Nemo
Will not be used in the project

 Yes NA NA

CM.II.4 OpenIFS-Nemo
Will not be used in the project

 Yes NA NA

Pillar II
FESOM

2

CP.II.2 FESOM2 dwarfs
Porting to GPU and FPGA

Yes Yes Yes High Medium

CM.II.5 init2 irregular communications
Avoid initialization algorithm to avoid
irregular pattern with produces load
imbalance in communications

 Yes Medium Medium

CM.II.6 Large collective operation not scaling
Reduce MPI operations

 Yes Medium Medium

CM.II.7 Load imbalance in ocean phase
Review the domain decomposition
algorithm to improve load balance

 Yes Medium Medium

Pillar II
OpenIF

S &
FESOM

2

CP.II.3 Hundreds/Thousand of simulations
Train a Neural Network/Machine Learning
model and perform simulation pruning

Yes Yes High High

25

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

Pillar II
NEMO

CP.II.4 Advection and diffusion tracers
Porting to GPU

Yes Medium High

CM.II.8 Multi-GPU communication using the CPU
memory
Using NCCL as communication protocol
between GPUs

Yes High Medium

ST.II.1 Large storage needs
Use NVRAM technology

 Yes Medium Medium

Pillar
III

Tsuna
mis

CP.III.1 Hundreds/Thousand of simulations
Train a Neural Network/Machine Learning
model and perform simulation pruning
Use MonteCarlo to reduce number of
simulations

Yes Yes Medium High

CM.III.1 Data transmission between stages
Streaming transmission

 Yes Medium Medium

ST.III.1 Large storage needs
Use NVRAM technology

 Yes Medium Medium

Pillar
III

Earthq
uakes

CP.III.2 Hundreds/Thousand of simulation runs
MLESmap (NN model) to perform
simulation pruning

Yes Yes Medium High

CM.III.2 Data transmission between stages
Run preprocessing and postprocessing
stages in HPC system (on premise)

 Yes Medium Medium

ST.III.3 Large output of simulations
Use NVRAM technology

 Yes Medium Medium

ST.III.4 Large dimensions of static data
Use NVRAM technology

 Yes Medium Medium

Neural
Netwo
rks (all
Pillars)

CP.X.1 NN kernels
Optimize implementation of the kernel for
both training and inference
FPGA: Energy Efficient implementation

Yes Yes Yes Medium Medium

CM.X.1 Distributed training inefficient due to
communication issues
Efficient implementation of data parallelism
Distributed training with specialized
libraries (NCCL)

 Yes Medium High

ST.X.1 Dataset access in distributed training
process
New storage technology (NVRAM) to
reduce access latency

 Yes Medium Medium

8. Conclusion
In this document we have addressed the identification process we performed in Task 3.1 for the
potential bottlenecks that exist or may exist for the use cases defined by the three Pillars. Most of
the work consisted in meetings with the Pillar’s partners and collection of a set of previous reports
where specific components of the Pillar’s use cases were already analysed.

The three Pillars are rather different but they end up showing related bottlenecks for the three
axes we analysed (compute, communication, storage). The identified bottlenecks have been listed

26

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

and potential optimizations and strategies for addressing them have been identified for each
bottleneck. Also important, we have matched them with new technologies that will be used within
the project.

The final Table of bottlenecks and expected actions will steer the subsequent development-related
tasks within WP3.

27

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

9. Acronyms and Abbreviations
- AI Artificial Intelligence
- AMG Algebraic Multigrid
- CESM Community Earth System Model
- CMIP6 Coupled Model Intercomparison Project Phase 6
- CPU Central Processing Unit
- CONV Convolution
- CUDA Compute Unified Device Architecture
- D Deliverable
- DA Data Analytics
- DSL Domain-Specific Language
- EPI European Processor Initiative
- ESM Earth System Model
- ETHZ Eidgenössische Technische Hochschule Zürich
- FEM Finite Elements Method
- FESOM2 Finite Element Sea Ice-Ocean Model 2
- FPGA Field Programmable Gate Array
- FPU Floating point unit
- FTRT Faster Than Real Time
- GB Giga Byte
- GeMM General Matrix-Matrix product
- GeMV General Matrix-Vector product
- GPU Graphics Processing Unit
- HPC High Performance Computing
- HPDA High Performance Data Analytics
- HySEA Hyperbolic Systems and Efficient Algorithms
- I/O Input/Output
- ML Machine Learning
- MLESmap Machine-Learning based Estimator for ground motion Shaking maps
- MPI Message Passing Interface
- MUSCL Monotone Upstream-centered Scheme for Conservation Laws
- NA Not applicable
- NCCL Nvidia Collective Communication Library
- NEMO Nucleus for European Modelling of the Ocean
- NN Neural Network
- NVRAM Non-Volatile Random Access Memory
- OpenIFS Open Integrated Forecasting System
- PAPI Performance Application Programming Interface
- POP Performance Optimization and Productivity
- PRACE Partnership for Advanced Computing in Europe
- PTF Probabilistic Tsunami Forecast
- ROM Reduced Order Model
- SALVUS Spectral-Element Wave Propagation (software package)
- SOR Successive Over-Relaxation
- SpMV Sparse Matrix-Vector product
- SpMM Sparse Matrix-Matrix product
- SpTrsv Sparse Triangular Solve

28

D3.1 Application bottlenecks and optimization opportunities on heterogeneous
components and optimization opportunities on heterogeneous components
Version 1.0

- STFC Science and Technology Facilities Council
- SVD Single Value Decomposition
- TC Tropical Cyclone
- UC Urgent Computing
- UCIS4EQ Urgent Computing Integrated Services for Earthquakes
- XIOS XML-IO-Server
- WP Work Package

10. References
[OPENIFS-BSC] Mario. C. Acosta, “Profiling and Computational Performance of IFS using BSC Tools”

[REP-FESOM2] Mario C. Acosta, FESOM2 Finite volumE Sea ice Ocean Model enhancement, Expert
Report PRACE Preparatory Access Type C & D, Project #2010PA5513, Type C, June 2021

[Koldunov19] N. V. Koldunov, V. Aizinger, N. Rakowsky, P. Scholz, D. Sidorenko, S. Danilov, and T.
Jung, Scalability and some optimization of the Finite-volumE Sea ice–Ocean Model, Version
2.0 (FESOM2), Geosci. Model Dev., 12, 3991–4012, http://doi.org/10.5194/gmd-12-3991-
2019, 2019.

[ISENES3-NEMO] IS-ENES3 Milestone M8.4, Definition of NEMO optimization strategy, January 25
2021.

[POP-NEMO] NEMO (POP_AR_078) report, April, 11 2020

[PRACE-NEMO] S. V. Paranuzzi, M.C. Acosta, M. Caastrillo, O. Tintó, K. Serradell, Keeping
computational performance analysis simple: an evaluation of the NEMO BENCH test, April
20, 2020.

[Mar20] P. G. Martinsson and J. Tropp, Randomized Numerical Linear Algebra: Foundations &
Algorithms. Acta Numerica, 29, pp 403-572, 2020.

https://doi.org/10.5194/gmd-12-3991-2019
https://doi.org/10.5194/gmd-12-3991-2019
https://www.cambridge.org/core/journals/acta-numerica/article/randomized-numerical-linear-algebra-foundations-and-algorithms/4486926746CFF4547F42A2996C7DC09C
https://www.cambridge.org/core/journals/acta-numerica/article/randomized-numerical-linear-algebra-foundations-and-algorithms/4486926746CFF4547F42A2996C7DC09C

	1. Executive Summary
	2. Introduction
	3. Pillar I: Reduced Order Models
	3.1 Generation of the input data (stage 1)
	Identified bottlenecks
	Potential optimizations

	3.2 Data extraction (stage 2)
	Identified bottlenecks
	Potential optimizations

	4. Pillar II: Dynamic and adaptive workflows for climate modelling
	4.1 ESM Dynamic (AI-assisted) Workflow
	4.1.1 OpenIFS
	Identified Bottlenecks
	Potential optimizations

	4.1.2 FESOM2
	Identified bottlenecks
	Potential optimizations

	4.2 Feature Extraction and Statistical Analysis Workflow
	4.2.1 NEMO
	Identified bottlenecks
	Potential optimizations

	5. Pillar III: Urgent Computing
	5.1 Tsunamis (PTF/FTRT)
	Identified bottlenecks
	Potential Optimizations
	Machine Learning to reduce Simulation Workload
	Potential improvement (Communication-related)
	MonteCarlo to reduce the number of simulations

	5.2 UC Integrated Services for EarthQuakes (UCIS4EQ)
	Identified bottlenecks
	Potential Optimizations

	6. All Pillars
	7. Discussion
	7.1 GPU support
	7.2 FPGA support
	7.3 EPI support
	7.4 Final List of Bottlenecks

	8. Conclusion
	9. Acronyms and Abbreviations
	10. References

