

D4.1 Requirements on the eFlows4HPC
software stack from Pillar I and evaluation

metrics
Version 1.2

Documentation Information

Contract Number 9555558

Project Website www.eFlows4HPC.eu

Contractual
Deadline

30.06.2021

Dissemination Level PU

Nature R

Author Riccardo Rossi (CIMNE)

Contributors
Jorge Ejarque (BSC), Rosa Badia (BSC), Gianluigi Rozza (SISSA), Giovanni
Stabile (SISSA), Guglielmo Scovazzi (CIMNE)

Reviewer Mario Ricchiuto (INRIA)

Keywords ROM, Digital Twin, Manufacturing

This project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 955558. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and Spain, Germany,
France, Italy, Poland, Switzerland, Norway.

1

D4.1 Requirements on the eFlows4HPC software stack from Pillar I and evaluation metrics
Version 1.2

Change Log

Version Description Change

V0.1 Preliminary version, brainstorm format

V0.2
Reworking the deliverable based on proposed template, and after
iteration with the BSC team

V1.0 Converged proposal

V1.1
Rewriting the deliverable to fit the presentation format employed in the
other parallel deliverables

V1.2
Clarification and addition of introductory references on the basic theory +
reformatting. Sparse correction as required in the review process

2

D4.1 Requirements on the eFlows4HPC software stack from Pillar I and evaluation metrics
Version 1.2

Table of Contents

3

D4.1 Requirements on the eFlows4HPC software stack from Pillar I and evaluation metrics
Version 1.2

The overall goal of Pillar I is to provide an integrated workflow enabling the development of
Reduced Order Models (ROM) from their inception to their deployment. The underlying objective
is to enable the effective usage of large scale HPC hardware in speeding up the generation of
reduced order models and to enable the solution of problems larger than it was possible prior to
the implementation of the new capabilities.

Section 3 details the subdivision of the workflow in successive phases as well as the requirements
of each of the steps and its relation with each other. Section 5 formalizes the requirements and
constraints for the Pillar I developments. Section 6 identifies the target metrics to be employed in
monitoring the progress of the Pillar developments during the project.

The use of modern simulation techniques makes possible the simulation of complex engineering
problems. This capability comes however at the cost of high computational requirements, often
incompatible with deployment in compute constraint environments.

ROM models provide a possible solution to this limitation. The essential idea is that the accurate
models, known as “Full Order Models” (FOM) can be used as a source of data to be harvested in
search of common patterns. Once those patterns are identified similar problems can be solved at
a much reduced computational cost.

The subject of current deliverable is to describe the phase needed for such learning, and to provide
an estimation of the requirements needed by each of the steps. The deliverable attempts also to
provide a clear definition of the expected data size and of the persistency requirements for the
data being generated.

WP4 aims at providing a flexible workflow for the construction of reduced order models to be used
in defining Digital Twins for manufacturing applications.

The essential idea is to start by defining a detailed model, named “Full Order Model” (FOM). The
FOM is applied to the solution of multiple scenarios and the results are stored in a database. The
results are harvested to find common patterns in the solution, defining a “reduced basis” which is
used to construct Reduced Order Models (ROM) able to perform approximate predictions at a
much reduced computational cost. A refinement of the model leading to the so called “hyper-
reduced” model is then performed to further reduce the computational cost. Finally, the results of
the hyper-reduced model are compared to the results of FOM, to decide if the procedure needs
to be iterated or if the model can be deployed to the final consumer. This idea is shown in the
Figure.

The reader is referred to [1,2,3,4] for an introductory discussion on the general algorithms at the
base of projection based reduction approach which will be targeted by Pillar I.

4

D4.1 Requirements on the eFlows4HPC software stack from Pillar I and evaluation metrics
Version 1.2

Figure 1. Model Reduction workflow

In order to design the workflow integration, we identify 5 clear substeps:

1. Generation of input data - Here a “training campaign” is defined and a set of simulations is
performed in order to provide the data on which the training of the reduced order models
will be based. Such data can be either used “on the flight” (one could recover the same
data as needed by rerunning the testcase) or stored to disk to avoid the need for
recomputing the data.

2. Data extraction phase - This phase analyses the output of the first phase in search of
common patterns to be used in the construction of a ROM basis which will form the basis
for the Projection-based ROM to be constructed. The most relevant kernel to be used in
this step will be the “Singular Value Decomposition” although other alternatives based on
the use of clustering techniques or on autoencoders may be evaluated. The output of such
a step is thus either a “linear” reduced order basis (which would take the form of a matrix
of doubles) or a cluster of solutions (multiple matrices) or potentially a trained neural
network (storing the trained autoencoder). Such data allow constructing a ROM at anytime

3. Hyperreduction Step - This step builds on the ROM computed as output of the previous
step and constructs new auxiliary data (by rerunning the training simulations basing on the
ROM model). Such data will be employed to detect an optimal integration basis thus
permitting the construction of “Hyperreduced models”. The possibility of generating and
using on the flight those data will be evaluated with the aim of minimizing intermediated
disk storage

4. Validation Step - the hyperreduced model is evaluated by assessing its performance against
the data generated in the step 1. New, not previously seen simulations (either newly run
at this stage or stored in step1 but not used) need to be used for this step. Depending on
the results of this step the workflow may need to go back to step1 and improve the training
set. Such a decision can either happen automatically or be user driven.

5

D4.1 Requirements on the eFlows4HPC software stack from Pillar I and evaluation metrics
Version 1.2

5. Deployment of the trained (and validated) Hyperreduced-ROM. Deployment may happen
in the cloud to ease the usage outside of the compute environment or on small form factor
devices

For each of those phases we detail the requirements as well as the IO required and the link to the
other phases.

ROM training, also known as “offline phase” of model reduction, is very intensive from the
computational point of view. At the same time, the memory requirements involved in the Data
Analytics phases (as we shall see later, phases 2 and 3) may be very demanding depending on the
amount of data to be analysed. This poses a practical challenge for the practical application of the
technology to relevant test cases.

The goal of the project is to enable taking advantage of next generation HPC in solving this
challenge. This will be accomplished by employing state-of-the-art workflow management systems
in reducing the computational bottlenecks involved through the Pillar I workflow. The expected
outcome is on one side to enlarge the problem size that can be practically tackled, and on the
other hand to reduce the “time to solution” needed to arrive to the desired result.

The table that follows attempts to describe the computational requirements of the different step
that compose the model reduction workflow, as described in Section 3. This includes both the
technologies to be used in each phase, the input and output dependencies and an estimation of
the expected runtime on the target hardware.

Table 1: Computational requirements of the different phases

Building
Block

Name Included
actions

Input/Output
data structure

HPDA/ML Deployment Time scale Description

1
Generation of
input data
(Phase 1)

Execute the
training
campaign and
make the
data ready
for successive
actions

Input data set
consists of a model
definition
completed by
several setups
describing the
simulation scenario
to be considered.
The output consists
logically of a
“snapshot matrix”
storing the desired
results of the
simulation. Each
column of the
matrix will
represent the
flattened output of
a simulation step.
This implies that
for a transient

NO HPC hours

Input model
must be
prepared for
execution and
made
available
locally in the
HPC machine.

6

D4.1 Requirements on the eFlows4HPC software stack from Pillar I and evaluation metrics
Version 1.2

problem the
columns will
represent “frames”
of the solution.
Results from
multiple scenarios
will be logically
concatenated
within the same
snapshots matrix.
Such logical
snapshot matrix
may be divided in
multiple archives to
be merged during
the second step.

2
Data Extraction
Phase (Phase 2)

Analyze
training data
to identify a
reduced basis

Input: data sets
consists of a
subset of the
output of Phase 1
(some data will be
set a part for the
validation phase)
Output: ROM that
consists of either
a smaller matrix
of doubles or a
ML model
(clustering/neural
network)

Requires
(distributed) SVD to
analyse the
snapshot matrix
obtained from
Phase 1. This is one
of the most
computationally
intensive steps
since such a matrix
will be very large
Eventually employ
clustering
algorithms/Neural
Networks for the
construction of a
non-linear basis
(will also require a
distributed version)

HPC Minutes/hours

The goal of
this step is to
identify the
reduced basis
to be used in
the
construction
of the reduced
order model
and in the
following
steps

3
Hyperreduction
step (Phase 3)

Determine
optimized
integration
rule

Input: consists of
the output of
Phase 1
Output: Hyper-
reduced Model is
a list of indices
and of weights
which, together
with the original
solver, defines
the ROM model.

Requires
distributed SVD as
a first step before
an optimization
loop. May
optionally need
Clustering
algorithms/Neural
Networks tools if
those were
employed in
phase 2

HPC Minutes/hours

The objective
of this step is
to identify an
optimized
integration
rule which
allows
reducing the
overall
computational
cost

Validation
Phase (Phase 4)

Determine if
the
hyperreduced
model is
“good
enough”

Input: data sets
consists of a
subset of the
output of Phase 1
(The part not
used in phase, 2
and 3) as well of
the outputs of
phase 2 and 3
Output is
“go”/”no go”
(may eventually
suggest to go
back to phase 1 or
phase 2)

Might make use
of Clustering
algorithms/Neural
Networks (only
inference).
Essentially we
need to compare
the output of the
ROM model to
data that we
didn’t see before,
to see how
accurate our
predictions are.
Model Evaluation
based on accuracy

HPC Minutes

Assess if the
model can
deliver on the
target
accuracy
when
targeting data
it was not
trained
against. An
unsuccessful
output
mandates to
go back to
Phase 2 (or
even 1 if more
data are
needed)

Deployement
phase

Distribute the
executable
and the
trained
model so that
it can be
executed

Input: outputs of
Phase2 and
Phase3. Model
used in Phase1.
Parameters to be
used in the
simulation

Requires the
simulation code as
a basis. May need
ANN inference
module in case a
nonlinear basis is
selected in Phase1

HPC/cloud Seconds/minutes

Distribution of
the model so
that it can be
run as
needed. May
run on the
same

7

D4.1 Requirements on the eFlows4HPC software stack from Pillar I and evaluation metrics
Version 1.2

where
needed

hardware as
where the
Phases 1-4 are
performed or
may be run on
a different
target (for
example in
the cloud)

The Pillar I workflow will require the use of development tools as described in the following table.

Table 2: Development tools needed for the development

Programming
language

Versions/distributions Role in the Pillar I workflow

sh bash, csh/tcsh, ksh Scripting at all stages of workflow execution

Python Conda or pip installation with possibility to install
user software

Scripting, data processing and visualization, glue language
between different components.

C++ Can be gcc or commercial versions Compilation of model code and analysis tools

A number of libraries should be available in the system in order to facilitate the deployment of the
Pillar I software stack. The list is contained in the table below.

Table 3: Main libraries needed for the deployment of the Pillar software stack

Library Versions/distributions Role in the Pillar I workflow

MPI Commercial versions or OpenMPI. Parallelization. The workflow should allow model compilation with different versions
of the MPI libraries, e.g. IntelMPI, OpenMPI, if the ESM has this option.

OpenMP Commercial versions or free. Parallelization. Support for OpenMP parallelisation is not as common in ESM
components as MPI, but still can be found quite often.

BLAS/LAPACK Commercial or free versions. linear algebra libraries.

HDF5 High performance library to write
binary data to disk.

HDF5 is used as option to write intermediate data to disk so that it can be easily
retrieved, parsed and analysed when needed

The workflow should provide information to workflow components on what infrastructure is
available on the machine, how to use it, and check if there are enough resources that can be
allocated to execute a particular configuration of the workflow. The most important resources are:

 Availability of computational resources. The number of cores used in Pillar I depends on
the size of the task and can range from just a few cores for test configurations to thousands
of cores, when very high spatial resolution, or a very wide training set is to be used.

 File system. The Pillar I model simulations produces a large amount of intermediate (and
temporary) data. Such data is to be written on disk (or such behaviour emulated) so that
locality and persistency of data becomes very important

8

D4.1 Requirements on the eFlows4HPC software stack from Pillar I and evaluation metrics
Version 1.2

The solvers and reduction models to be developed in Pillar I are expected to be portable, it should
hence be possible to compile or retrieve the required model on any target platform. Specific
requirements to be fulfilled by the workflow are:

 Workflow programming and management have to allow re-start the ROM computation
according to validation results.

 Workflow management is also required through the phases to coordinate the execution of
the different computing units

The complete workflow involves a number of different steps and the storage of various
intermediate data.

The simulation starts with an initial mesh and configuration files, with a memory occupation of the
order of “few” GB. Training data are then generated in Phase1 and consumed in the following
table. The size of such data can be estimated to be in the order of 100GB, corresponding to a
typical matrix size of the order of 10^6 by 5000 (specific cases may however exceed such sizes). In
phase 3 an even larger data set is constructed, however the constructed data is consumed
immediately and not persisted for the following phases.

The storage of ML models, to be used when exploring nonlinear reduction, will also require the
storage of structured data, a task for which native data formats will be employed whenever
possible. The table below resumes the Production and consumption patterns to be used in the
workflow.

Table 4: Data Requirements for Pillar 1

Data Item Data Flow Persistency Data Type Consumption Pattern Notes

Simulations Definitions Source persistent json Read in Phase 1,3,4 This will depend on the actual
solver being used

Mesh Source persistent Solver
specific
format/
HDF5 (if
possible)

Read in Phase 1,3,4 This will depend on the actual
solver being used

Snapshot Matrix Intermediate
data

persistent Matrix
format

1-N (Created in 1 and consumed in
2,3 and 4)

The matrix format to be
employed will depend on the
implementation being employed
for the distributed storage

Reduced Model Intermediate
data

persistent Matrix
format

1-1 (Created in 2 and used in 3)

Intermediate matrices
for Hyper-reduced
Modes

Intermediate
data

Not
persistent

Matrix
format

Created and consumed in phase 3

Hyper-reduced Model Workflows
Result

persistent Native ML
format o r
HDF5based

Validated in Phase 4 and deployed in
Phase 5

9

D4.1 Requirements on the eFlows4HPC software stack from Pillar I and evaluation metrics
Version 1.2

The following table summarizes the essential features required for the successful development
of the Pillar Software stack, providing also an estimation of their relative importance.

Table 5: Summary of features required for Pillar 1

The purpose of this section is to identify the target metrics to be used in assessing the
improvements of the software stack as well as of the underlying theory.

Workflow developments will be based on python scripts based on PyCOMPSs as well as on
developments on the solver side will. Minimal, automated, test cases should be provided to verify
the implementation within the workflow. Improvements in the runtimes for selected testcase
should be monitored during the project. The selected metrics is thus the time needed to train a
Reduced Order Model starting from a Full Order Model and a predefined training campaign.

A second possible metrics is the “size” of problem that can be reduced. To this end we shall
consider that the model reduction phases are both limited by the amount of available memory
and by the computational cost involved. The developments shall progressively relief such practical
limitations by allowing the workflow to effectively leverage large distributed systems through the
entire workflow.

A third metrics, will be to keep track of the “reduction ratio” between the number of degrees of
freedom (dofs) in the Full Order and Reduced Order model when clustering or autoencoders are
used as alternative to linear projection algorithms.

10

D4.1 Requirements on the eFlows4HPC software stack from Pillar I and evaluation metrics
Version 1.2

Data transfer should be limited to input testcases and training output. In particular the hyper-
reduced model will contain only the minimal information needed to restart the model at any place.

A possible metrics will be also to monitor the distributed SVD speedup as well as the largest
achievable problem size.

A summary of the proposed metrics is given in the table below.

Table 6: Collection of Target Metrics to be used for Pillar I

The workflow is divided in a number of interdependent phases. The main requirements are
sketched and the relation between the workflow phases is identified. The data flow is also
identified and tentatively quantified.

11

D4.1 Requirements on the eFlows4HPC software stack from Pillar I and evaluation metrics
Version 1.2

- HPC – High Performance Computing

- KPI – Key Performance Indicator

- WP – Work Package

- ML – Machine Learning

- DA – Data Analytics

- SVD – Singular Value Decomposition

- ROM – Reduced Order Model

- FOM – Full Order Model

12

D4.1 Requirements on the eFlows4HPC software stack from Pillar I and evaluation metrics
Version 1.2

[1] M. Hinze and S. Volkwein, Proper orthogonal decomposition surrogate models for nonlinear dynamical
systems: Error estimates and suboptimal control, in Dimension Reduction of Large-Scale Systems, Lect.
Notes Comput. Sci. Eng. 45, Springer, Berlin, 2005, pp. 261–306.

[2] K. Kunisch and S. Volkwein, Control of the Burgers equation by a reduced-order approach using proper
orthogonal decomposition, J. Optim. Theory Appl., 102 (1999), pp. 345–371.

[3] W. R. Graham, J. Peraire, and K. Y. Tang, Optimal control of vortex shedding using low- order models.
Part I—Open-loop model development, Internat. J. Numer. Methods Engrg., 44 (1999), pp. 945–972.

[4] S. S. Ravindran, A reduced-order approach for optimal control of fluids using proper orthogonal
decomposition, Internat. J. Numer. Methods Fluids, 34 (2000), pp. 425–448.

