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Rewriting the deliverable to fit the presentation format employed in the 
other parallel deliverables 

V1.2 
Clarification and addition of introductory references on the basic theory + 
reformatting. Sparse correction as required in the review process 
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The overall goal of Pillar I is to provide an integrated workflow enabling the development of 
Reduced Order Models (ROM) from their inception to their deployment. The underlying objective 
is to enable the effective usage of large scale HPC hardware in speeding up the generation of 
reduced order models and to enable the solution of problems larger than it was possible prior to 
the implementation of the new capabilities.  

Section 3 details the subdivision of the workflow in successive phases as well as the requirements 
of each of the steps and its relation with each other. Section 5 formalizes the requirements and 
constraints for the Pillar I developments. Section 6 identifies the target metrics to be employed in 
monitoring the progress of the Pillar developments during the project. 

 

 
The use of modern simulation techniques makes possible the simulation of complex engineering 
problems. This capability comes however at the cost of high computational requirements, often 
incompatible with deployment in compute constraint environments.  

ROM models provide a possible solution to this limitation. The essential idea is that the accurate 
models, known as “Full Order Models” (FOM) can be used as a source of data to be harvested in 
search of common patterns. Once those patterns are identified similar problems can be solved at 
a much reduced computational cost. 

The subject of current deliverable is to describe the phase needed for such learning, and to provide 
an estimation of the requirements needed by each of the steps. The deliverable attempts also to 
provide a clear definition of the expected data size and of the persistency requirements for the 
data being generated. 

 

 

WP4 aims at providing a flexible workflow for the construction of reduced order models to be used 
in defining Digital Twins for manufacturing applications. 

The essential idea is to start by defining a detailed model, named “Full Order Model” (FOM). The 
FOM is applied to the solution of multiple scenarios and the results are stored in a database. The 
results are harvested to find common patterns in the solution, defining a “reduced basis” which is 
used to construct Reduced Order Models (ROM) able to perform approximate predictions at a 
much reduced computational cost. A refinement of the model leading to the so called “hyper-
reduced” model is then performed to further reduce the computational cost. Finally, the results of 
the hyper-reduced model are compared to the results of FOM, to decide if the procedure needs 
to be iterated or if the model can be deployed to the final consumer. This idea is shown in the 
Figure. 

The reader is referred to [1,2,3,4] for an introductory discussion on the general algorithms at the 
base of projection based reduction approach which will be targeted by Pillar I. 
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Figure 1. Model Reduction workflow 

 

In order to design the workflow integration, we identify 5 clear substeps: 

1. Generation of input data - Here a “training campaign” is defined and a set of simulations is 
performed in order to provide the data on which the training of the reduced order models 
will be based. Such data can be either used “on the flight” (one could recover the same 
data as needed by rerunning the testcase) or stored to disk to avoid the need for 
recomputing the data. 

2. Data extraction phase - This phase analyses the output of the first phase in search of 
common patterns to be used in the construction of a ROM basis which will form the basis 
for the Projection-based ROM to be constructed. The most relevant kernel to be used in 
this step will be the “Singular Value Decomposition” although other alternatives based on 
the use of clustering techniques or on autoencoders may be evaluated. The output of such 
a step is thus either a “linear” reduced order basis (which would take the form of a matrix 
of doubles) or a cluster of solutions (multiple matrices) or potentially a trained neural 
network (storing the trained autoencoder). Such data allow constructing a ROM at anytime 

3. Hyperreduction Step - This step builds on the ROM computed as output of the previous 
step and constructs new auxiliary data (by rerunning the training simulations basing on the 
ROM model). Such data will be employed to detect an optimal integration basis thus 
permitting the construction of “Hyperreduced models”. The possibility of generating and 
using on the flight those data will be evaluated with the aim of minimizing intermediated 
disk storage 

4. Validation Step - the hyperreduced model is evaluated by assessing its performance against 
the data generated in the step 1. New, not previously seen simulations (either newly run 
at this stage or stored in step1 but not used) need to be used for this step. Depending on 
the results of this step the workflow may need to go back to step1 and improve the training 
set. Such a decision can either happen automatically or be user driven. 
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5. Deployment of the trained (and validated) Hyperreduced-ROM. Deployment may happen 
in the cloud to ease the usage outside of the compute environment or on small form factor 
devices 

For each of those phases we detail the requirements as well as the IO required and the link to the 
other phases. 

 

 
ROM training, also known as “offline phase” of model reduction, is very intensive from the 
computational point of view. At the same time, the memory requirements involved in the Data 
Analytics phases (as we shall see later, phases 2 and 3) may be very demanding depending on the 
amount of data to be analysed. This poses a practical challenge for the practical application of the 
technology to relevant test cases. 

The goal of the project is to enable taking advantage of next generation HPC in solving this 
challenge. This will be accomplished by employing state-of-the-art workflow management systems 
in reducing the computational bottlenecks involved through the Pillar I workflow. The expected 
outcome is on one side to enlarge the problem size that can be practically tackled, and on the 
other hand to reduce the “time to solution” needed to arrive to the desired result. 

 
The table that follows attempts to describe the computational requirements of the different step 
that compose the model reduction workflow, as described in Section 3. This includes both the 
technologies to be used in each phase, the input and output dependencies and an estimation of 
the expected runtime on the target hardware. 

 

Table 1: Computational requirements of the different phases 

Building 
Block 

Name Included 
actions 

Input/Output 
data structure 

HPDA/ML Deployment Time scale  Description 

1 
Generation of 
input data 
(Phase 1) 

Execute the 
training 
campaign and 
make the 
data ready 
for successive 
actions 

Input data set 
consists of a model 
definition 
completed by 
several setups 
describing the 
simulation scenario 
to be considered. 
The output consists 
logically of a 
“snapshot matrix” 
storing the desired 
results of the 
simulation. Each 
column of the 
matrix will 
represent the 
flattened output of 
a simulation step. 
This implies that 
for a transient 

NO HPC  hours 

Input model 
must be 
prepared for 
execution and 
made 
available 
locally in the 
HPC machine.  
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problem the 
columns will 
represent “frames” 
of the solution. 
Results from 
multiple scenarios 
will be logically 
concatenated 
within the same 
snapshots matrix. 
Such logical 
snapshot matrix 
may be divided in 
multiple archives to 
be merged during 
the second step. 

2 
Data Extraction 
Phase (Phase 2) 

Analyze 
training data 
to identify a 
reduced basis 

Input: data sets 
consists of a 
subset of the 
output of Phase 1 
(some data will be 
set a part for the 
validation phase) 
Output: ROM that 
consists of either 
a smaller matrix 
of doubles or a 
ML model 
(clustering/neural 
network) 
 

Requires 
(distributed) SVD to 
analyse the 
snapshot matrix 
obtained from 
Phase 1. This is one 
of the most 
computationally 
intensive steps 
since such a matrix 
will be very large 
Eventually employ 
clustering 
algorithms/Neural 
Networks for the 
construction of a 
non-linear basis 
(will also require a 
distributed version) 

HPC Minutes/hours 

The goal of 
this step is to 
identify the 
reduced basis 
to be used in 
the 
construction 
of the reduced 
order model 
and in the 
following 
steps 

3 
Hyperreduction 
step (Phase 3) 

Determine 
optimized 
integration 
rule 

Input: consists of 
the output of 
Phase 1  
Output: Hyper-
reduced Model is 
a list of indices 
and of weights 
which, together 
with the original 
solver, defines 
the ROM model. 

Requires 
distributed SVD as 
a first step before 
an optimization 
loop. May 
optionally need  
Clustering 
algorithms/Neural 
Networks tools if 
those were 
employed in 
phase 2 

HPC Minutes/hours 

The objective 
of this step is 
to identify an 
optimized 
integration 
rule which 
allows 
reducing the 
overall 
computational 
cost 

 
Validation 
Phase (Phase 4) 

Determine if 
the 
hyperreduced 
model is 
“good 
enough” 

Input: data sets 
consists of a 
subset of the 
output of Phase 1 
( The part not 
used in phase, 2 
and 3) as well of 
the outputs of 
phase 2 and 3 
Output is 
“go”/”no go” 
(may eventually 
suggest to go 
back to phase 1 or 
phase 2) 

Might make use 
of Clustering 
algorithms/Neural 
Networks (only 
inference). 
Essentially we 
need to compare 
the output of the 
ROM model to 
data that we 
didn’t see before, 
to see how 
accurate our 
predictions are. 
Model Evaluation 
based on accuracy 

HPC Minutes 

Assess if the 
model can 
deliver on the 
target 
accuracy 
when 
targeting data 
it was not 
trained 
against. An 
unsuccessful 
output 
mandates to 
go back to 
Phase 2 (or 
even 1 if more 
data are 
needed) 

 
Deployement 
phase 

Distribute the 
executable 
and the 
trained 
model so that 
it can be 
executed 

Input: outputs of 
Phase2 and 
Phase3. Model 
used in Phase1. 
Parameters to be 
used in the 
simulation 

Requires the 
simulation code as 
a basis. May need 
ANN inference 
module in case a 
nonlinear basis is 
selected in Phase1 

HPC/cloud Seconds/minutes 

Distribution of 
the model so 
that it can be 
run as 
needed. May 
run on the 
same 
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where 
needed 

hardware as 
where the 
Phases 1-4 are 
performed or 
may be run on 
a different 
target (for 
example in 
the cloud) 

 

 

The Pillar I workflow will require the use of development tools as described in the following table. 

 

Table 2: Development tools needed for the development 

Programming 
language 

Versions/distributions Role in the Pillar I workflow 

sh bash, csh/tcsh, ksh Scripting at all stages of workflow execution  

Python Conda or pip installation with possibility to install 
user software 

Scripting, data processing and visualization, glue language 
between different components. 

C++ Can be gcc or commercial versions Compilation of model code and analysis tools 

 

 

A number of libraries should be available in the system in order to facilitate the deployment of the 
Pillar I software stack. The list is contained in the table below. 

 

Table 3: Main libraries needed for the deployment of the Pillar software stack 

Library Versions/distributions Role in the Pillar I workflow 

MPI Commercial versions or OpenMPI. Parallelization. The workflow should allow model compilation with different versions 
of the MPI libraries, e.g. IntelMPI, OpenMPI, if the ESM has this option.  

OpenMP Commercial versions or free. Parallelization. Support for OpenMP parallelisation is not as common in ESM 
components as MPI, but still can be found quite often. 

BLAS/LAPACK Commercial or free versions.  linear algebra libraries.  

HDF5 High performance library to write 
binary data to disk. 

HDF5 is used as option to write intermediate data to disk so that it can be easily 
retrieved, parsed and analysed when needed 

 

 

The workflow should provide information to workflow components on what infrastructure is 
available on the machine, how to use it, and check if there are enough resources that can be 
allocated to execute a particular configuration of the workflow. The most important resources are: 

 Availability of computational resources. The number of cores used in Pillar I depends on 
the size of the task and can range from just a few cores for test configurations to thousands 
of cores, when very high spatial resolution, or a very wide training set is to be used.  

 File system. The Pillar I model simulations produces a large amount of intermediate (and 
temporary) data. Such data is to be written on disk (or such behaviour emulated) so that 
locality and persistency of data becomes very important 
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The solvers and reduction models to be developed in Pillar I are expected to be portable, it should 
hence be possible to compile or retrieve the required model on any target platform. Specific 
requirements to be fulfilled by the workflow are: 

 Workflow programming and management have to allow re-start the ROM computation 
according to validation results. 

 Workflow management is also required through the phases to coordinate the execution of 
the different computing units 

 

 

The complete workflow involves a number of different steps and the storage of various 
intermediate data. 

The simulation starts with an initial mesh and configuration files, with a memory occupation of the 
order of “few” GB. Training data are then generated in Phase1 and consumed in the following 
table. The size of such data can be estimated to be in the order of 100GB, corresponding to a 
typical matrix size of the order of 10^6 by 5000 (specific cases may however exceed such sizes). In 
phase 3 an even larger data set is constructed, however the constructed data is consumed 
immediately and not persisted for the following phases.  

The storage of ML models, to be used when exploring nonlinear reduction, will also require the 
storage of structured data, a task for which native data formats will be employed whenever 
possible. The table below resumes the Production and consumption patterns to be used in the 
workflow. 

 

Table 4: Data Requirements for Pillar 1 

Data Item Data Flow Persistency Data  Type Consumption Pattern Notes 

Simulations Definitions  Source  persistent json Read in Phase 1,3,4 This will depend on the actual 
solver being used 

Mesh Source persistent Solver 
specific 
format/ 
HDF5 (if 
possible) 

Read in Phase 1,3,4 This will depend on the actual 
solver being used 

Snapshot Matrix Intermediate 
data 

persistent Matrix 
format 

1-N (Created in 1 and consumed in 
2,3 and 4) 

The matrix format to be 
employed will depend on the 
implementation being employed 
for the distributed storage 

Reduced Model Intermediate 
data 

persistent Matrix 
format 

1-1 ( Created in 2 and used in 3)  

Intermediate matrices 
for Hyper-reduced 
Modes 

Intermediate 
data 

Not 
persistent 

Matrix 
format 

Created and consumed in phase 3  

Hyper-reduced Model Workflows 
Result 

persistent Native ML 
format o r 
HDF5based 

Validated in Phase 4 and deployed in 
Phase 5 
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The following table summarizes the essential features required for the successful development 
of the Pillar Software stack, providing also an estimation of their relative importance. 
 

Table 5: Summary of features required for Pillar 1 

 

 
The purpose of this section is to identify the target metrics to be used in assessing the 
improvements of the software stack as well as of the underlying theory. 

Workflow developments will be based on python scripts based on PyCOMPSs as well as on 
developments on the solver side will. Minimal, automated, test cases should be provided to verify 
the implementation within the workflow. Improvements in the runtimes for selected testcase 
should be monitored during the project. The selected metrics is thus the time needed to train a 
Reduced Order Model starting from a Full Order Model and a predefined training campaign. 

A second possible metrics is the “size” of problem that can be reduced. To this end we shall 
consider that the model reduction phases are both limited by the amount of available memory 
and by the computational cost involved. The developments shall progressively relief such practical 
limitations by allowing the workflow to effectively leverage large distributed systems through the 
entire workflow. 

A third metrics, will be to keep track of the “reduction ratio” between the number of degrees of 
freedom (dofs) in the Full Order and Reduced Order model when clustering or autoencoders are 
used as alternative to linear projection algorithms. 
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Data transfer should be limited to input testcases and training output. In particular the hyper-
reduced model will contain only the minimal information needed to restart the model at any place. 

A possible metrics will be also to monitor the distributed SVD speedup as well as the largest 
achievable problem size. 

A summary of the proposed metrics is given in the table below. 

 

Table 6: Collection of Target Metrics to be used for Pillar I 

 

 
The workflow is divided in a number of interdependent phases. The main requirements are 
sketched and the relation between the workflow phases is identified. The data flow is also 
identified and tentatively quantified. 
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- HPC – High Performance Computing 

- KPI – Key Performance Indicator 

- WP – Work Package 

- ML – Machine Learning 

- DA – Data Analytics 

- SVD – Singular Value Decomposition 

- ROM – Reduced Order Model 

- FOM – Full Order Model 
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