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This document presents the work performed in WP5 regarding gathering and systematizing 
information about typical Earth System Model (ESM) workflow building blocks and their software 
and infrastructural requirements. We also define relative metrics to measure improvements and 
success of the eFlows4HPC workflow development relating to the Pillar II use cases. 

First, a detailed description of the typical ESM workflow steps is provided, followed by description 
of innovative workflow components developed within Pillar II (namely dynamical data analysis and 
feature extraction). From those descriptions, we draw requirements for the software stack and 
infrastructure that have to be matched during development of the eFlows4HPC architecture. As 
the final step, we select metrics to measure different quality aspects that are considered important 
to take into account during the design process that will be followed. We describe the applicability 
and importance of those metrics to the ESM workflow. 

 

The atmospheric, ocean, and later Earth System Models simulations on HPC have a long history, 
dating back to the 1960s. This is one of the most challenging HPC use cases, not only due to very 
high computational cost, but also due to additional challenges related to intensive I/O patterns, 
very large data volumes, and the necessity of not only producing data on HPC, but also post-
processing it there. 

The aim of this document is to support development of the eFlows4HPC architecture by providing 
the following information: 

- Clear description of the basic workflow building blocks. This will allow workflow 
developers to get a better understanding of what the typical ESM workflow consists of. 

- More detailed description of innovative workflow components. As part of the 
eFlows4HPC tasks is to develop innovative components of the workflow, that will help to 
save resources and allow performing of more ambitious scientific tasks, the steps involved 
in execution of those components should be described in more detail. 

- Define software and infrastructure requirements of the workflow and its components. 
We will use information about basic steps involved in the workflow in order to determine 
those requirements. The team developing the general eFlows4HPC architecture can then 
match those requirements with software from the eFlows4HPC stack and other relevant 
solutions. 

- Define metrics to evaluate the resulting eFlows4HPC workflow. We will provide metrics 
that are relevant to Pillar II with description on how ESM workflows will benefit from 
improvements in those metrics. 

This document sets the stage for further development of the general and Pillar II-specific elements 
of the workflow and defines criteria for evaluation of progress in this development.  
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The classical climate modelling workflow consists of several preparation and post-processing 
stages that we are going to outline below. First, we present a list of main steps in an order that is 
close to the chronological order during the execution of the workflow with innovative steps 
proposed by eFlows4HPC marked by bold font.  

 Preparation of model computational mesh 

 Preparation of initial conditions 

 Preparation of forcing data 

 Model compilation 

 Preparation of model configuration 

 Model run 
o Monitoring of the model run 
o Dynamical data analysis 
o Data output 

 Data post-processing 

 Data analysis 
o Sanity checks/ standard diagnostics 
o Scientific analysis of the data 
o Feature extraction 

 Data archiving 

 Data distribution 

 

Preparation of model computational mesh 

Computation of most of the components of the climate models happens on a computational grid 
(or mesh). It splits some geographical domain (the whole globe, ocean, land, particular area) into 
small regions that are represented by discrete points, that can be either aligned regularly 
(quadrilateral grid), or irregularly (unstructured mesh). For many Earth system components there 
is also vertical discretization. The users have to decide on the configuration of the mesh taking into 
account the balance between the lateral/vertical resolution necessary to resolve processes they 
are interested in and the computational resources one has to spend. In most cases computational 
meshes are reused, as every new mesh most probably means a new set of tuning parameters. 
However, there are cases when mesh generation could be part of the workflow. It is usually in 
connection with situations when users want to have better resolution in some particular region, 
motivated either by scientific needs or urgency of the situation (oil spill, natural disaster). Since 
components of the climate model often have different computational meshes, part of the mesh 
preparation is generation of interpolation weights that allow a quick interpolation of information 
that has to be exchanged between model components. An additional task is partitioning of the 
grid, to distribute model domain among different computational cores. This is trivial in the case of 
regular grids that cover the whole globe but requires some additional software (partitioner) if the 
grid only partly covers the Earth’s surface, or is unstructured. 
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Preparation of initial conditions 

The components of the climate model should have some initial state that is characterized by a 
distribution of properties, such as temperature and salinity in the ocean, or atmospheric pressure 
in the atmosphere. There are two main sources, where spatial distributions of those properties 
can be obtained. One is observational data, usually taken in some gridded form for the area of 
interest (e.g. global atmosphere, or ocean). Another is the results of simulations performed by 
other models, often performed on different computational grids. The initial conditions data 
required by the user should be available on the file system and interpolated to the computational 
grid. Sometimes interpolation functionality is built into the model, but in most cases some 
adjustments of the data format are necessary. In case of the ensemble runs, perturbations in initial 
conditions are usually used to make ensemble members slightly different from each other. The 
basic requirement from the workflow would be to provide information on where different forcing 
files are located (Catalog), how to connect them to the model setup, and how to interpolate them 
when needed. 

 

Preparation of forcing data 

For climate models, initial conditions alone are not enough, there should be periodic updates of 
information about conditions not directly simulated by the climate model or one of its 
components. In the case of the full coupled model examples are solar constants, CO2 
concentrations, and aerosol concentrations. This additional flow of information is called forcing. 
For a climate model, usually the amount of this information is not large (as it may contain most of 
the components generating the fluxes), but things change when components of the climate system 
run separately. For example, if an ocean model runs in a stand-alone regime, there should be 
constant updates (at least several times per model day) on the information about surface 
atmospheric temperature, wind, radiation and so on. This information may correspond to actual 
time series, or just climatic averages, and it is taken from pre-processed files that can be large in 
volume. The basic requirement from the workflow would be to provide information on where 
different forcing files are located (Catalog) and how to connect them to the model setup. 

 

Model compilation 

The code of the model should be checked out from the repository and compiled for the particular 
machine. As coupled models sometimes consist of components that are located in different 
repositories, the workflow should make sure that the right versions of the code that are 
compatible with each other are checked out. Compilation settings depend on the machine and 
libraries/compilers the user would like to use. This information should be available either at the 
model level, or somehow controlled by the workflow.  

 

Preparation of model configuration 

Climate models naturally can have different setups that differ by grid configurations, initial 
conditions, and types of forcing, as well as by parameters of dynamical and parameterization 
packages. The settings are changed according to the scientific tasks, but are also heavily dependent 
on the model grid and input files. The proper default parameters will depend on a combination of 
grid, initial and forcing conditions that users have selected. The task of the workflow is to select 
this proper combination and generate configuration files for each component of the climate 
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model, as well as for the whole coupled setup. In case of the ensemble runs, configurations should 
be prepared for each ensemble member. The files necessary to submit the job to an HPC also have 
to be generated. An additional task at this stage would be to save as much information as possible 
about model code, model configuration, and computational environment to foster reproducibility 
of the results and make bug-tracing easier. 

 

Model run/monitoring 

The model run(s) (or runs in the case of an ensemble) should be submitted to a supercomputer, 
and the monitoring of the job state should be performed regularly. Note that in the case of 
ensemble runs, each instance of the climate model usually has a different runtime directory, in 
which all the outputs, logs and model checkpoints/restarts will be saved. The initial data that is 
common to all the ensemble members can be just linked from a common directory, but there are 
some other files which belong to each instance (sometimes perturbed copies of a common one, as 
explained above) and need an individual copy per ensemble runtime. There should be a possibility 
to resubmit the run for cases where the allocated time is over or some simple error has occurred 
and notify the user about the status of the job and help to find errors.  

 

Data output 

During the model run the usual procedure is to dump from time to time the state of the model to 
disk into so-called restart files. As climate simulations usually take days or even months to 
complete, they have to be computed in chunks that fit to HPC job allocation requirements. 
Moreover, it allows you to modify parameters (e.g. time step) if the model becomes unstable and 
rerun the chunk of the model from this saved intermediate state. 

Model output/diagnostics (in terms of arrays on the computational mesh) are dumped to disk 
during the model run, so that the user can analyze the data afterwards. If the data are not used 
for monitoring of the model run, already at this stage they can be archived. The volume of the data 
and the frequency of the output depend on computational grid and user settings and can vary 
from gigabytes to terabytes per model year. There are different types of model I/O implemented 
in climate models, starting from sequential single core to asynchronous output that happens 
without interrupting model computation. 

 

Dynamical data analysis 

Information about changes in the running model state can be accessed directly from memory, 
without serialization to the disk, and analyzed asynchronously, parallel to the model run. This 
solves the problem of simulation/diagnostics I/O bounds, since saving data to disk is a slow 
operation, and for some types of data analysis/model resolutions/number of ensemble members 
it can’t be performed in practice with high enough frequency.  

 

Data post-processing 

Usually data that are outputted by the climate models are already in the format that can be directly 
used for data analysis. However, for some of the variables conventions have to be made in order 
to put data in more convenient coordinates, or units. In the case of large intercomparison projects, 
like the Coupled Model Intercomparison Project (CMIP), model data should be provided in the 



 

7 

 

D5.1 Requirements on the eFlows4HPC software stack from Pillar II and evaluation metrics. 
Version 1.0 

specific format with predefined sets of meta-data, requiring conversion. The latter stage can be 
combined with archiving (see below). 

At this point the data analysis part begins, and here the possibilities are limitless. The workflow 
should provide the user access to the data stored on disk and the possibility to process those data 
with different tools. This can be either general purpose tools, like programming languages (e.g. 
Python, R, Matlab) and libraries for those languages (numpy, scipy, xarray), or special programs 
for working with climate model data (e.g. cdo, nco). In addition, there can be predefined post-
processing pipelines, aimed at some specific analysis. One of such examples is the Feature 
extraction workflow, described in the chapter below. Another is a predefined set of sanity 
checks/standard diagnostics that are performed for each model run. As for every climate model 
this set of diagnostics will be different, the general workflow probably only has to provide an 
interface for calling that diagnostic and providing an execution environment and necessary 
resources.  

Depending on the amount of data and computational complexity of the data analysis, the post 
processing requires a large range of computational resources. It spans from sequential analysis on 
one core with a small amount of RAM, to the multi-node parallel HPC jobs, running for days. The 
range of the data volume produced by those analyses, and hence the I/O and disk space 
requirements are also quite large. It can be a time series of 100 records, characterizing the mean 
global atmospheric temperature for each year of the century, or derived variables (e.g. vorticity, 
total precipitation), that have the same size as the original data. 

Most of the data processing scenarios in climate science require that data are available on the disc. 
There are options when copying chunks of the data from a tape archive, performing analysis on 
them and then proceeding to the next chunk, if possible, but they are rare and inefficient.  

 

Data archiving 

For key experiments, like those used for publications, intercomparison projects, or multiple 
research projects, data archiving has to be performed. Usually the data is copied to the tape 
archive to be stored for long times and to be retrieved, when additional analysis is necessary. In 
some cases this step is combined with model run and data post-processing, when data are post-
processed and archived with some frequency (e.g. each 5 model years). For this step it is important 
to have well defined mechanisms/policies of data archival and retrieval, so all the necessary data 
are archived and can be easily retrieved by request.  

 

Data distribution 

In some cases wide access to the data should be provided for users that do not have access to HPC 
archives. Most prominent examples are data that is used for preparation of scientific publications, 
and results of large coordinated computational efforts (CMIP), that should be available for multiple 
groups around the world. Usually services that provide capabilities for such data distribution also 
provide Digital Object Identifiers (doi) and guarantee that for some time data will be available. 
Currently, locating data in the cloud has become popular, which allows to “bring the code to the 
data”, and perform data analysis using cloud resources instead of downloading large amounts of 
data to local computing centers.  
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The overarching goal of WP5 is to take advantage of the eFlows4HPC architecture to enhance 
innovation for intelligent and integrated end-to-end HPDA-enabled ensemble Earth System Model 
(ESM) workflows. 

A typical ensemble workflow experiment consists of several start dates and members divided in 
several sequential simulation chunks. A strong and performant workflow solution is needed since 
these types of experiments are very resource consuming, due to their static nature. It is very hard 
to have a flexible approach. 

On the other hand, data-driven solutions can provide new methodologies for analytics and feature 
extraction at scale, for example with respect to multi-model analysis and extreme event analysis. 

Figure 1 shows an overview of the general workflow targeted by eFlows4HPC Pillar II on climate.  

 

 

Figure 1. General Pillar II workflow 

 

The overall idea is that eFlows4HPC provides components or functionality to allow ESM simulation 
runs the capacity to prune members that don't add anything useful to the whole simulation. The 
idea is to make a better use of computational and storage resources by performing a smart (AI-
driven) pruning of ensemble members (and releasing resources accordingly) at runtime. 
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Figure 2. Dynamic AI-assisted workflow 

 

A possible initial approach could be to take pruning decisions on variables and accumulated 
metrics that may vary over time and that we are able to store and check during the different time 
steps of an ensemble run, for each defined member in the ensemble. 
 

 

 

Figure 3. Overview of the Dynamic ESM pruning component 
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Then we will conduct an assessment about similarity in which two thresholds are defined, either 
to say the member is an outlier or is essentially identical to at least one of the ongoing members 
that are currently executing in the ensemble run. One of the challenges here is to define the initial 
starting point for conducting the pruning; if we do this too early, we may discard members that 
actually will produce useful results for the simulation as a whole. This way we can have a dynamic 
workflow with optimized resource usage. 

 

The eFlows4HPC infrastructure will be also exploited in the context of the case study related to 
the multi-model analysis of a Tropical Cyclone (TC) track. Figure 4 provides a high-level view of the 
workflow considered. 
In order to evaluate how TCs activity might change under different climate conditions - in terms of 
landfall, associated strong winds, heavy precipitation etc. [1,2] - it is important to investigate their 
representation by General Circulation Models (GCMs). Also, our knowledge of the TC interaction 
with the climate system can build on GCM results [3-5]. This can be done following different 
detection and tracking methods [6] available in literature and also investigating new Machine 
Learning approaches, to verify the possibility of speeding up the detection process in the context 
of a multi-model multi-member analysis. 

Figure 4. Feature extraction workflow 

 
The case study joins together (i) the tropical cyclone detection and tracking on three-dimensional 
fields, like pressure, temperature, wind velocity, and vorticity and (ii) the multi-model analysis on 
the products resulting from the first step. The analysis will take into account two different use 
cases based on different input sources and considering different application scenarios. 

The first one represents the base scenario where the extraction and further analysis of TC 
detection and tracking information are applied on the output of a single climate model, specifically 
the CMCC-CM3 model. CMCC-CM3 is the latest model version under development at CMCC, based 
on the previous version of the CMCC coupled climate model [7,8] and largely based on the 
Community Earth System Model (CESM) project (http://www.cesm.ucar.edu) operated at the 
National Centre for Atmospheric Research (NCAR) in the United States. The important and 
strategic difference with the NCAR coupled model is the oceanic component. As a member of the 
Nucleus for European Modelling of the Ocean (NEMO) consortium (https://www.nemo-ocean.eu), 
CMCC takes an active part in the development and evolution of ocean related engines. That 
motivated us to replace the CESM ocean component with the NEMO physical core.  Based on the 

http://www.cesm.ucar.edu/
https://www.nemo-ocean.eu/


 

11 

 

D5.1 Requirements on the eFlows4HPC software stack from Pillar II and evaluation metrics. 
Version 1.0 

CMCC-CM2 model, CMCC contributed to the Coupled Model Intercomparison Project phase 6 [9]. 
The model is an essential component of the CMCC seamless simulation system that spans 
operational seasonal predictions and climate scenario productions. In CMCC-CM3, the 
atmospheric component is the CAM6 and the ocean component is NEMO 4.0. 

The second scenario will consider large volumes of data from centennial CMIP6 products at the 
highest horizontal resolution available (e.g. ¼ degree resolution) and with a temporal frequency 
of at least 6 hours: by coordinating the design and distribution of global climate model simulations 
of the past, current, and future climate, the Coupled Model Intercomparison Project (CMIP) has 
become one of the foundational elements of climate simulations. In this case CMIP6 experiments 
outputs will feed the TC detection and tracking procedures and the subsequent multi-model multi-
member analysis. 

In general terms, the overall case study will perform an in-depth comparison (by means of specific 
statistical analysis and scientific validation approaches) between deterministic and ML-based 
schemes (e.g., based on Neural Networks) for TC detection and tracking by leveraging the 
eflows4HPC infrastructure, workflow approaches, HPDA and ML/DL solutions. More in detail, 
HPDA frameworks (e.g. Ophidia) will be used to exploit HPC architectures and parallel 
(MPI/OpenMP) environments to perform statistical analysis, intercomparison operations, indices 
computation from large amounts of data, for instance in a multi-model ensemble analysis 
perspective. Parallel analysis, which allows the performance of complex operations on multiple 
computational cores or concurrently on different sets of data, and parallel I/O, to speed-up the 
retrieval/storing of data from/to the underlying storage, are key features to take into account in 
the design of the data analytics approach in the Pillar II context. 

 

In order to facilitate development of the general workflow architecture, in this chapter we will 
provide an overview of the software requirements and constraints coming from typical tasks that 
have to be performed in the ESM related workflows. First a general overview of the workflow 
building blocks with associated actions, input/output data structures, indication of HPDA/ML 
resource usages, deployment location and typical time scales will be given. Then more concrete 
software and infrastructure requirements to perform those actions will be listed and discussed. 
We will do it first for the generalized Pillar II workflow, and then in more detail for innovative 
components developed in the framework of eFlows4HPC. 

 

In this section we list common requirements that are applicable for general purpose ESM 
workflows. To begin with, below is the table where main building blocks of the typical ESM 
simulation and data processing workflow are presented. This should help to identify software 
solutions suitable for each of the building blocks. The building blocks cover steps from preparation 
of different types of input data for running the ESM, through model execution and data post-
processing to final archiving of those data in a long-term storage or distributing it to the public. 
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Table 1. Building blocks of the typical ESM simulation and data processing workflow 
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Although different components of ESM workflows have variable requirements in terms of software 
and infrastructure, we first list minimum requirements that are common for every ESM workflow. 
The architecture of the workflow should provide access to the listed software and make sure that 
resources in the infrastructure are available and can be allocated. 

 
Programming languages 

There is a standard list of HPC-oriented programming languages that should be available on the 
system in order to be able to compile ESM models and execute supporting scripts. The workflow 
should provide information to workflow components on availability and details of compiler 
installation (path to compilers, compiler names, etc.). 
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Table 2. Standard programming languages necessary to compile components of the typical ESM 
workflow. 

 

Specialized software dependencies 

There are several software libraries that have become de-facto standards in the ESM community, 
and should be available for any version of ESM workflow. The workflow should provide information 
to workflow components on availability and details of library installations (path to libraries, options 
they are compiled with, e.t.c). 

 

Table 3. Standard libraries necessary to compile components of the typical ESM workflow. 

 

Infrastructural requirements 

The workflow should provide information to workflow components on what infrastructure is 
available on the machine, how to use it, and check if there are enough resources that can be 
allocated to execute a particular configuration of the workflow. The most important resources are 
the following: 

● Availability of computational resources. The number of cores used by ESMs depends on 
the size of the task and can range from just a few cores for test configurations to hundreds 
of thousands of cores, when very high spatial resolution is used. Post processing tasks 
usually require an order of 100 cores if the post processing is done in parallel.  

● Availability of fast networking communications. Often computations in ESM components 
are bound by communications (e.g. Koldunov et al., 2019) and hardware that allows for 
faster communication is better suited for running ESM models.  

● File system. The ESM model simulations produce large amounts of data, and for some 
setups (e.g. stand-alone ocean or atmosphere simulations) also consume considerable 
amounts of data. That’s why it is important to have a fast and responsive file system that 
will not slow down the simulations during I/O operations. The I/O operations are also often 
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a bottleneck for post-processing tasks, especially those related with reading a lot of data 
into the memory. 

● Online storage. The large data volumes produced by ESM simulations should be stored on 
disk for a relatively long time before the post processing is finished and the data are ready 
to move to archive or deleted. This is why there is a considerable amount of storage (order 
of at least tens of TB) required for comfortable execution of ESM related workflows. Tasks 
related to post-processing of multimodal ensembles (like CMIP6) might require even larger 
amounts of disk space. 

● Offline storage/Tape archive. Storing all data generated by ESM model simulations in 
online storage for a long time is not feasible due to large volume, and decrease in data 
processing intensity with time. Usually the data that should be further analyzed in the 
future are stored in the offline storage facilities, like tape archives. The workflow should be 
able to integrate with such a storage and support putting model fields to archive 
immediately after the simulation (for fields that are not frequently used), as well as after 
some time the simulation is finished. 

 

This section describes the requirements for the AI-assisted ESM member diagnostic component of 
the workflow needed to make the ESM workflow dynamic. The considered scenarios are the 
following: 

● Use case 1:  
○ This use case describes the main ESM workflow implementation with FESOM2 and 

OpenIFS models, fully described in the previous section 5.1 
● Use case 2:  

○ This use case describes the Dynamic ESM part for the workflow previously 
described 

○ The general workflow manager will decide which members to discard based on the 
result of the assessment done by the AI-assisted Member diagnostic component on 
the model variables for each running member and do the pruning. 

○ A persistent storage solution will be used, as well as Python as a development 
language.  

In principle, both the general workflow manager and AI-Assisted component can run 
asynchronously. 

 

Requirements from the software functionality  

In this section we list a summary of the Dynamic Member diagnostic component building blocks 
as a part of the ESM workflow requirement specification.  
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Table 4. Dynamic Member diagnostic component building blocks. 
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Besides the general description provided in the building blocks table, it is important to mention 
that the ESM Dynamic workflow depends on specific software from the climate science domain 
which is not directly part of the eFlows4HPC software stack, specifically the OpenIFS and FESOM2 
models, used to conduct climate simulations. The tasks related to the building blocks mentioned 
in the general case (the use case 1) will be performed by the Integrated workflow manager, as will 
the orchestration of job submissions/re-submissions, ensemble pruning and monitoring. The ESM 
member diagnostic component will provide the necessary data analysis on the fly and feed 
decisions on the fate of ensemble members to the workflow manager. 

The following table provides an overview of the data used or produced within the two use cases 
mentioned above in terms of data format and usage. 

 

Table 5. The format and usage of the data produced by use cases 1 and 2 (section 5.2). 

 

This section describes the requirements for the statistical analysis and feature extraction part of 
the workflow.  

In terms of task flow, the analysis and feature extraction component is formed by 4 different 
macro-modules: CMCC-CM3 Simulation Run, Pre-processing phase, Feature Extraction and Multi-
member/Statistical Analysis. Each of the aforementioned components interacts with one or more 
modules in terms of Input/Output or required functionalities to perform their specific 
operations/computations. In addition, each macro-module is composed of different sub-modules 
able to carry out a single task/analysis/procedure. Following the two main scenarios presented in 
4.2, their related flow is described below:  

 



 

18 

 

D5.1 Requirements on the eFlows4HPC software stack from Pillar II and evaluation metrics. 
Version 1.0 

 Use case 1: 
o The workflow starts the execution of the CMCC-CM3 model (building block 1). The 

ESM simulation runs in parallel with the Pre-processing (building block 2) and the 
Feature extraction (building block 3) phases; 

 The pre-processing phase (building block 2) prepares the input for the 
subsequent feature extraction - TC detection and tracking and statistical 
analysis - phase (building block 3) along with observational data; 

o A further analytics block (building block 4) computes extreme event indices directly 
on model output; 

o For each iteration of the model execution, the aforementioned steps are executed 
at model runtime. Input data to the model must also be available on the storage; 

 Use case 2:  
o The workflow starts directly from the model data (i.e., CMIP6 dataset); 
o The pre-processing phase (building block 2) prepares the input for the subsequent 

feature extraction - TC detection and tracking and statistical analysis - phase 
(building block 3) along with observational data; 

o A final block performs the multi-model analysis (building block 4) over the results 
from the feature extraction phase (building block 3); 

 In both cases:  
o the software components in the various stages (preprocessing, TC detection and 

tracking, statistical analysis) can be executed when required during the workflow; 
o The ML model used in the Feature Extraction phase (building block 3) should be pre-

trained. Training should be executed offline on GPUs using ERA5 and IBTrACS data. 

The key aspects of each building block of the workflow presented in this description are 
summarized in the following table. The templates used to derive the requirement for each building 
block are enclosed as an Appendix at the end of this document. 

 

Table 6. Analysis and feature extraction component building blocks. 
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Besides the general description provided in the table 6, it is worth mentioning that the workflow 
depends on some specific software components from the climate science domains which are not 
directly part of the eFlows4HPC software stack, but that can benefit from the integrated workflow 
approach proposed in the project. The main software dependencies are: 

● CMCC-CM3 - ESM that will be used for development of this component of the workflow. It 
is noteworthy that the model can run only the CMCC HPC infrastructure. It is written in 
Fortran and bash scripts and requires MPI and other libraries (e.g. NetCDF and numerical 
libraries); 

● TSTORMS - specific tool for TC detection/tracking (eg. 
https://www.gfdl.noaa.gov/tstorms/); 

● NetCDF-oriented tools: CLI (e.g., CDO, NCO, Ncview) or Python modules for pre-processing 
of NetCDF data and visualization (matplotlib, netcdf4, cfgrib, cartopy, xarray). 

The following table provides an overview of the data used or produced within this use case in 
terms of data format and usage.  

 

Table 7. The format and usage of the data produced by the use case (section 5.3). 

https://www.gfdl.noaa.gov/tstorms/
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Taking into account information on building blocks and requirements of the ESM workflow and its 
components described above, in this section we provide the general functional and non-functional 
requirements. The keywords in the priority column are defined according to the RFC 2119 [11].  

 

Table 8. General functional and non-functional requirements. 
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Besides the identified functional and non-functional requirements, it would be important to also 
ensure the following best practices that cover aspects related to code quality and development.  

Test coverage: ESM models are multicomponent systems that have multiple dependencies in 
compilation and runtime. Changes in the system configuration or in the model code can introduce 
errors that are hard to find without continuous testing of the whole system (integration tests). 
Preferably continuous integration testing is implemented at the earliest stages of the 
development. 

Inline documentation: This is mainly important for workflow developers, since it helps to 
understand the code and effectively implement their solutions.  

Deployment and user documentation: The extent and quality of deployment documentation 
ensure smooth installation of all components of the workflow on new HPC systems by system 
administrators, and faster solution for possible problems. User documentation is a necessary 
component for the successful adoption of the workflows by large numbers of users.  

 

This section provides the definition of metrics quantifying, for example, accessibility, reliability, 
scalability, performance, energy efficiency, and cost related to the Pillar II workflow. After defining 
a set of potential metrics, the list of key metrics, selected for the evaluation of the workflow during 
the project, is provided at the end of this section. 

 

In the following, we will list metrics relevant for Pillar II from the collection suggested by WP1, and 
add additional metrics that are specific for our workflows. 

 

Development & Maintenance 

The complexity of the code should be held to a minimum. Ideally, users should not deal directly 
with the configurations of the underlying software components (e.g., PyCOMPSs and TOSCA), but 
manage the workflow through configuration files. Reducing the code complexity for workflow 
developers is also beneficial, and will increase adoption of the system. The concrete metrics that 
are relevant in this respect are: 

Lines of Code: It measures the number of lines of codes in the source files associated with the 
workflows.  

Cyclomatic Complexity: This measures the cyclomatic complexity from the source files. 

Duplications: Measures the number of times the same code is repeated in the source files. 

Decrease in all these three metrics will be considered an improvement. 
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Accessibility & Deployment  

Users of ESMs often should be able to run different configurations of models on different 
machines. Even if the user always does a simulation in one HPC center, machines are changed 
every 5 years on average. The availability of the same software stack that manages workflow in 
different HPC centers is a key element for wide adoption of the eFlows4HPC solutions, which 
should be highly portable and easy to deploy.  

Degree of portability: The landscape of ESM computations is changing, moving from 
homogeneous CPU-only systems to heterogeneous systems that include several architectures, like 
GPU and ARM. Moreover, novel storage solutions (e.g. NVRAM) are also becoming popular in HPC. 
Ability to use the same or similar components of the workflow on systems with different 
architectures, as well as on different infrastructures, is an advantageous quality of a workflow 
solution. The metric evaluates the percentage of workflow components capable of working on 
different infrastructures and with different architectures. 

Deployment time: This measures the time elapsed to deploy the workflow. 

Improvement in both of these metrics will foster adoption of the workflow on different HPC 
systems. 

 

Data Management  

Typically, ESM workflows produce large amounts of data that should be accessible for further 
analysis and also partly archived in long-term storage. One of the consequences of implementation 
of the dynamic part of the ESM workflow should be a reduction in the volume of data generated 
by ensemble simulations due to reduction in the number of simulations (caused by pruning), and 
due to in-memory analysis of data, that ease requirements on frequency of the model output.  

Size of input/output data: For Pillar II, the analysis and feature extraction component of the 
workflow will try to increase the volume of data it can work with simultaneously (input data),  while 
success for the dynamical component of the workflow will be in decreasing the amount of output 
data. This metric measures the amount of input and output data processed/generated. 

IO time: The ESM workflows are intensive in terms of IO operations and reduction in the time of 
these operations will be beneficial. For the analysis and feature extraction component it would be 
the time data is loaded to memory for further analysis, while for the dynamical component of the 
workflow improvement in IO time should be achieved by decreasing the number of output fields 
and their frequency. It is measured as the percentage of execution time associated with I/O 
operations.  

 

Reliability 

Running ESM can be associated with a considerable number of failures that are related to 
complexity of the workflows. The failures can be caused by model physics (instability of the model 
in some regimes), but also the model’s code, pre/post processing software, or problems with the 
infrastructure the ESM workflow is running on. In most cases re-running the whole 
workflow/simulation, which can last for many days, is unreasonable. All ESM models have 
mechanisms of checkpointing, so the simulation can be continued from some saved model state, 
while the other parts of the ESM workflow usually do not have mechanisms of recovery from the 
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fault states. Implementing the ways that allow ESM simulations and post-processing jobs to 
recover from failures in the cases that can be fixed without necessary user interaction, would be 
beneficial. 

Fault-tolerant components: In ESM workflows the simplest strategy on the failure is to retry 
execution of the part of the workflow, since the errors are quite often related to unpredictable 
failures in the infrastructure the workflow is executed on. For some parts of the workflow to 
recover from failures, checkpointing should be implemented; that will be considered an 
improvement in fault-tolerance. One has to keep in mind that checkpointing is usually an 
expensive operation in terms of I/O and it should be balanced in order to not degrade data 
management metrics excessively. Increase in the number of workflow components that can be 
retried on failure will be a positive improvement. This metric measures the percentage of 
components of the workflow that support some type of fault-tolerance mechanism.  

 

Performance & Scalability  

Performance is one of the most important characteristics to be considered for the success of the 
workflow. While both performance and scalability of the main components of the Pillar II 
workflows (i.e. ESM models) are out of the control of the workflow developers, the components 
of the workflow should not lead to considerable degradation of those parameters. Some decrease, 
though, is acceptable since it is not possible to have the additional benefits of, for example, a 
dynamical workflow, without additional computational cost.  

For the feature extraction and analytics components, many of the tasks can be considered 
embarrassingly parallel (e.g. processing of data from individual CMIP6 models do not depend on 
each other) and should scale well.  

Speed-up and Efficiency (Strong and weak scaling): Can only be improved for the components 
developed by eFlows4HPC, especially relating to data post-processing and analysis. Improvements 
will be measured by comparing strong and weak scaling before and after optimizations.  

Execution time: The total workflow execution time should be as short as possible. This metric will 
exclude the computational components of the workflow, like model runs, but will include the 
components optimized by the project, as well as estimating the time spent on setting up the 
runtime of the workflow, preparing and submitting the simulation, logging and exiting from the 
workflow.  

 

Energy Consumption  

This metric is closely related to most of the Data management and Performance and Scalability 
metrics, where improvements could potentially lead to improvements also in energy consumption.  

Energy consumption: This metric will be evaluated based on the estimated values of energy spent 
for all components of the workflow.  

 

Cost  
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As the main resource the users of HPC systems are applying for is core hours, reduction in this 
parameter is the most attractive for ESM modelling groups, and will lead to better adoption of 
workflows developed by eFlows4HPC.  

Core hours: This metric is closely related to improvements in the effectiveness of individual 
components of the workflow, as well as with more rational use of resources due to optimizations 
or reduction of computations necessary to reach specific scientific goals, as in case of the 
dynamical and AI assisted component of the Pillar II workflow. Decrease in this metric will be 
considered an improvement.  

 

Others 

Here we list a few additional metrics that are important mainly for Pillar II. 

Accuracy of the results: The main criteria for this metric is that scientific questions that are 
addressed by the old methods should be addressable also by using novel approaches developed 
within eFlows4HPC. Results of the novel approaches should have comparable accuracy of the 
results. Optimisations in other metrics should not degrade the accuracy of scientific results. The 
evaluation of these metrics will be performed by comparing old and new approaches. 

Simulated years per day: In ESM simulations increase in this metric is considered to be an 
improvement, and mostly controlled by the effectiveness of the ESM model. While improvements 
in the ESM model performance and scalability is not one of the tasks in eFlows4HPC, the dynamical 
component of the workflow potentially can reduce the I/O footprint in the ESM model execution 
and hence increase the SYPD values. 

 

Starting from the metrics just presented a set of key metrics for Pillar II have been selected. The 
final list of selected metrics that will be used to evaluate the workflow implementation is: 

 

Table 9. Key metrics for Pillar II. 
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The ESM modelling workflows of Pillar II consist of many building blocks of different complexity. 

In this document we provide a short description of functionality associated with those building 
blocks, and draw a generalised set of requirements that software solutions should satisfy in order 
to execute them. For each building block, we define associated actions, input/output data 
structures, indication of HPDA/ML resource usages, deployment location, and typical time-scales. 
We also provide descriptions of data creation consumption patterns. In order to track the 
development and improvements in the eFlows4HPC solutions relevant to Pillar II, the set of 
evaluation criteria (metrics) are identified. We also provide descriptions on how Pillar II use cases 
will benefit from improvements in those metrics. 

The requirements on the eFlow4HPC software stack from Pillar II defined in this document will 
guide the software architecture design that will be described in the D5.2 “Design of the Pillar II use 
cases”. 
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Term or abbreviation Description 

CA Consortium Agreement 

CMIP Coupled Model Intercomparison Project  

D Deliverable 

DoA Description of Action (Annex 1 of the Grant Agreement) 

EB Executive Board 

EC European Commision 

ESM Earth System Model 

GA General Assembly 

GPU Graphics Processing Unit 

HPC High Performance Computing 

HPCWaaS HPC Workflow as a service 

HPDA High Performance Data Analytics 

IPR Intellectual Property Right 

KPI Key Performance Indicator 

M Month 

ML Machine Learning 

MPI Message Passing Interface 

MS Milestones 

PM Person month / Project manager 

TC Tropical Cyclone 

WP Work Package 

WPL Work Package Leader 

UC Use case 
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The following report the templates used for requirement identification for each block composing 
the workflow. 

Building blocks Requirements: OpenIFS/FESOM2 simulation run  (Use Case 1) 

● Input/output data set 

○ Input:   

■ Initial conditions, forcing files, Netcdf or grib format, size: some GBs depending 

of the dataset,  Datasets available on storage on execution time; 

■ Mesh files for most common supported resolutions (Fesom2).  

■ Model config files, outclasses files, usually on txt or XML format 

○ Output:  

■ netcdf files, size will depend on the resolution and mesh size, but at least 

several TBs are expected to be generated. 

■ log and diagnostic files of the run, usually in format of txt files, for big 

experiments the size can be considerably bigger but less than 1 GB 

● Computational Granularity:  

■ Coarse grained (>secs)) since simulation can last several days  

● Require specific software/hardware 

○ Software:  

■ OasisMCT, 

■ MPI library (OpenMPI or Intel) 

■ netCDF fortran library. 

■ esm-tools (Python scripts) for running coupled system 

■ CDO (climate data operators) for quick operation on netCDF files. 

■ ncview for quick inspection of netCDF files 

○ Hardware: 

■ Enough infrastructure in number of cores and nodes to run desired model 

configurations 

■ fast, reliable and parallel I/O, fast connection between cores and nodes 

■ Enough storage to store intermediate and final results (> 1TB) 

● Programming Languages 

■ Bash 

■ Python (numpy, pandas, matplotlib, netcdf4, cartopy, pyfesom2) 

■ Fortran 

■ C 

■ C++ 
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Building blocks Requirements: Pruning of the members (Use Case 2) 

● Input/output data set 

○ Input: set of intermediate restarts or set of model variables we consider important to 

evaluate to conduct the assessment for all  the involved members of the ensemble 

○ Output: an array of members that should be either discarded or continued depending 

of the criteria we will adopt on this ( TBD ) 

● Computational Granularity: medium/fine-grain (<1sec) 

○ The decision on which members will be discarded should be decided as fast as possible 

● Require specific software/hardware 

○ Software:  

■ OpenIFS/FESOM2 model 

■ netCDF fortran library. 

■ esm-tools (Python scripts) for running coupled system 

■ CDO (climate data operators) for quick operation on intermediate results, 

restarts ( netCDF files) . 

○ Hardware: 

■ Ultra fast memory/ Non-volatile RAM memory if available 

■ Enough storage to maintain the storage needs of the Hecuba as 

database/object repository 

● Programming Languages 

○ Bash 

○ Python (numpy, pandas, matplotlib, netcdf4, cartopy, pyfesom2) 

○ Fortran 

 

Workflow deployment /execution requirements 

● Locality 

○ Initially intended to run on MN4 (MareNostrum4) but also it may be ported to AWI 

machine (Ollie) 

● Licenses 

○ Intel MPI 

○ Intel compilers 

○ FESOM2 (LGPL, free) 

○ Hecuba (Apache License 2.0) 

○ Open-IFS (ECMWF institutional license, BSC has it). 

● Data availability: 

○ initial conditions, forcing files, meshes and model sources are available in storage 

before start the execution of the model 

● Expected execution requirements 
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○ ESM ensemble run (use case 1): before running the model, all needed components are 

correctly deployed such as PyCOMPSS workflow engine, Hecuba and any other 

component or library needed to run an ensemble of the model 

○ Member pruning (use case 2): before running, hecuba object repository is initialized, 

during execution, the pruning component to make the ESM dynamic can process the 

intermediate data or a subset of current model variable values at a defined step or 

after the execution of a given number of members 

 

Data Requirements 

● Data set: 

○ Standard format for initial conditions and /forcing files: netcdf, grib 

○ Small amount of initial conditions, periodically obtaining boundary conditions during 

the simulation, large amount of output data. 

● Data flow: Sources / Intermediate data /Outputs: 

○ ESM ensemble run (use case 1): 

■ Sources : CMIP6 datasets; initial conditions in netcdf format  

■ Intermediate: OpenIFS-Fesom2 model output/restarts, netcdf format  

■ Output: netcdf files and text files with execution logs and diagnostics 

○ Member pruning (use case 2): 

■ Sources : multidimensional arrays 

■ Intermediate: N/A 

■ Output: standard arrays/ numpy arrays 

● Persistency requirements: 

○ Disk as main use case, but for the dynamic workflow part some data should be 

persistent in memory 

● Data types/structure (collections of small items, big items, arrays…): 

○ Output is netCDF - large files, for the pruning component most likely to be numpy 

arrays 

● Data creation-consumption pattern (1 to 1, 1 to N) 

○ 1 to 1, Mostly data creation, factor depend on model resolution and frequency of 

output 

 

Building blocks Requirements: CMCC-CM3 simulation run 

● Input/output data set 



 

31 

 

D5.1 Requirements on the eFlows4HPC software stack from Pillar II and evaluation metrics. 
Version 1.0 

○ Input: CMCC-CM3 initial conditions, radiative forcings (Netcdf format), size: few GBs; 
Datasets available on storage. 

○ Output: Netcdf: ~1 TB for 1 year of simulation 

● Computational Granularity: coarse-grain(>secs)/ fine-grain (<1sec) 

○ ~3h to simulate 1 month 

● Require specific software/hardware 

○ Model runs only on HPC at CMCC (necessary constraint for the duration of the project 
due to internal CMCC policies) 

● Programming Languages 

○ Fortran, bash scripts 

● DA requirement 

○ No DA operations required, only data movement and data organization processes (mv, 
cp, …) 

 

Building blocks Requirements: Pre-processing 

● Input/output data set 
○ Input: CMIP6 or CMCC-CM3 datasets – Netcdf format 
○ Output: Netcdf suitable for TC detection/tracking or Analytics blocks 

● Computational Granularity: coarse-grain(>secs)/ fine-grain (<1sec) 
○ It depends on the input datasets size; some seconds/minutes 

● Require specific software/hardware 
○ Netcdf-oriented tool: cdo (Climate data operators) or nco (NetCdf Operator) 

● Programming Languages 
○ bash script, python 

● DA requirement 
○ Concatenation of timesteps, regridding (if needed) 

● ML requirements 
○ None 

● Integration of DA, ML with HPC kernels 
○ Evaluate HPDA solutions to parallelize/speed up the execution 

 

Building blocks Requirements: Feature extraction 

● Input/output data set 
○ Input 

■ Multiple variables from ERA5 data 3-hourly data spanning from 1979 to 2020 
(NetCDF format) (needed for ML NN training) 

■ IBTrACS observations: historical TC best track data 
■ Netcdf from the pre-processing phase. 

○ Output 
■ NetCDF/txt with TC detection-tracking and statistical analysis results 

● Computational Granularity: coarse-grain(>secs)/ fine-grain (<1sec) 
○ ML NN Training: coarse grain 
○ It depends on datasets input: some seconds/minutes 
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● Require specific software/hardware 
○ Hardware: GPU (for NN training), CPU single core or MPI execution (depending on the 

specific implementation) 
○ Software: specific tool for TC detection/tracking (eg. 

https://www.gfdl.noaa.gov/tstorms/), eflows4HPC ML tools/frameworks (e.g. Heat or 
EDDL), Python data science modules (netcdf4py, pandas, numpy), eflows4HPC data 
analytics tools/frameworks (e.g. Ophidia) 

● Programming Languages 
○ Fortran, Python 

● DA requirement 
○ Potential storm identification and storm tracking by means of specific algorithms of TC 

detection and tracking, computation of different statistical features (e.g. Nr of TCs per 
basin, distribution in the different categories, etc.) 

● ML requirements 
○ CNN for TC detection 

● Integration of DA, ML with HPC kernels 
○ Evaluate HPDA solutions to parallelize/speed up the execution (e.g. Ophidia) 

 

Building blocks Requirements: Multimember/Statistical Analysis 

● Input/output data set 
○ Input: Pre-processed CMCC-CM3 dataset (Netcdf format), statistical analysis from 

feature extraction (Netcdf format), Observational best track data 
○ Output: Netcdf (or txt) with indices/analytics results data 

● Computational Granularity: coarse-grain(>secs)/ fine-grain (<1sec) 
○ Few seconds/minutes 

● Require specific software/hardware 
○ numpy, pandas, matplotlib, netcdf4, cartopy, Ophidia, Netcdf-oriented software 

● Programming Languages 
○ Python, C 

● DA requirement 
○ Percentile/threshold based extreme events indices computation on 

temperature/precipitation (e.g. heat waves, …), multi-model trend analysis, multi-model 
intercomparison 

● ML requirements 
○ None 

● Integration of DA, ML with HPC kernels 
○ HPDA solutions to parallelize/speed up the execution (e.g. Ophidia) 

 

Workflow deployment /execution requirements (for all blocks) 

● Deployment restrictions 

○ Locality: CMCC-CM3 model needs to run on CMCC cluster 

○ Licenses: most of the software/code should be open source with the exception of the 
climate model simulation code and related output 
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○ Data availability: data from the model(s) is required for the execution of the pre-
processing step, ERA5 data for training the ML TC detection, IBTrACS for TC 
detection/tracking validation and TC model comparison  

● Expected execution requirements 

○ Use case 1: 

■ The workflow will also start the execution of the CMCC-CM3 model. The ESM 
simulation runs in parallel with the Feature extraction phase. For each iteration 
of the model execution, the aforementioned steps are executed at model 
runtime. Input data to the model must also be available on the storage. 

■ ERA5 and IBTrACS should be accessible.  

■ A further analytics block computes extreme events indices directly on model 
output. 

○ Use case 2:  

■ CMIP6 data should be available on storage.  

■ A further block performs the multi-model analysis 

○ Common: 

■ The ML model should be pre-trained. Training should be executed offline on 
GPUs. 

■ The pre-processing phase prepares the input for the subsequent feature 
extraction (TC detection and tracking and statistical analysis) phase along with 
observational data 

■ The software components in the various stages (preprocessing, TC detection and 
tracking, statistical analysis) can be executed when required during the 
workflow. The Ophidia service components can be deployed in advance, while 
the computing components are executed on-demand.  

 

 

Data Requirements (for all blocks) 

● Data flow: Sources / Intermediate data /Outputs 

○ Sources: CMIP6 datasets; CMCC-CM3 models initial conditions, radiative forcings, ERA5 
reanalysis data, observational data (IBTrACS) 

○ Intermediate: CMCC-CM3 model output, netcdf format at different time frequencies. 
6hourly time frequencies files are input of the TC deterministic detection and tracking. 

○ Output: netcdf or txt with information on TC detection & tracking and other statistical 
analysis (to be further evaluated). 

● Persistency requirements (in –memory/disk) 

○ Disk for the model output and the final results from TC track and detection 

○ Other intermediate results could be in-memory 

● Data types/structure (collections of small items, big items, arrays…) 

○ NetCDF files: n-dimensional arrays (2, 3 or 4 dimensional) 

○ text files with the TC positions (lat, lon, id) 

● Data creation-consumption pattern (1 to 1, 1 to N) (stream…) 
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○ Use case 1: N to 1 (Model simulation -> preprocessing); 1 to 1 (preprocessing -> TC 
detection & tracking & analysis) 

○ Use case 2: N to 1 (CMIP6 -> preprocessing); 1 to 1 (preprocessing -> TC detection & 
tracking & stats. analysis); M to 1 (stat. analysis -> multi-model analysis) 

 


