

D5.2 Design of the Pillar II use cases
Version 1.0

Documentation Information

Contract Number 9555558

Project Website www.eFlows4HPC.eu

Contractual
Deadline

31.08.2021

Dissemination Level PU

Nature R

Author Julian Rodrigo Berlin (BSC)

Contributors
Suvarchal K. Cheedela (AWI), Alessandro D’Anca (CMCC), Donatello Elia
(CMCC), Enrico Scoccimarro (CMCC), Giovanni Aloisio (CMCC)

Reviewer Nikolay Koldunov (AWI)

Keywords software design , architecture, data standards, ESM workflows

This project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 955558. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and Spain, Germany,
France, Italy, Poland, Switzerland, Norway.

1

D 5.2 Design of the Pillar II use cases
Version 1.0

Change Log

Version Description Change

V0.1 First draft with a proposed ToC

V0.2 First review & improvements

V1.0
Final version, suggestions and corrections from the reviewer were
addressed

2

D 5.2 Design of the Pillar II use cases
Version 1.0

Table of Contents

1. Executive Summary .. 4

2. Introduction .. 4

2.1 Purpose and scope of the document ... 5

2.2 Reference documents .. 5

3. High level view of the architecture .. 5

3.1 Overview .. 5

3.2 Architecture of the Pillar use-cases ... 7

4. Pillar II Use Cases design .. 7

4.1 Scope of the Design.. 8

4.2 ESM Dynamic workflow ... 9

4.2.1 Summary of involved use cases .. 9

4.2.2 Use case 1: ESM Dynamic Workflow ... 9

4.2.2.1 Introduction .. 9

4.2.2.2 Workflow Initialization ... 11

4.2.2.3 Workflow Execution & Monitoring ... 13

4.2.2.4 Workflow Post-Processing & disposal .. 15

4.2.2.5 Ensemble generation utils .. 17

4.2.2.6 Data diagnostics utils .. 18

4.2.3 Use case 2: Dynamical Data Analysis .. 18

4.2.3.1 Introduction .. 18

4.2.3.2 Ensemble Member data analysis .. 19

4.2.3.3 Similarity criteria ... 20

4.2.4 Data model .. 22

4.3 Statistical analysis and feature extraction ... 23

4.3.1 Summary of involved use cases .. 24

4.3.1.1 Use case 1: CMCC-CM3 datasets .. 24

4.3.1.2 Use case 2: CMCC-CM3 runtime ... 25

4.3.1.3 Use case 3: CMIP6 datasets .. 26

4.3.2 Workflow building blocks description ... 26

4.3.2.1 Machine Learning TC detection training .. 27

4.3.2.2 CMCC-CM3 simulation run ... 30

4.3.2.3 Pre-processing for Machine Learning (inference) TC detection 30

3

D 5.2 Design of the Pillar II use cases
Version 1.0

4.3.2.4 Pre-processing for deterministic TC analysis .. 32

4.3.2.5 Pre-processing for extreme events data analytics ... 33

4.3.2.6 Machine Learning TC detection inference ... 33

4.3.2.7 Deterministic approach for TC detection ... 34

4.3.2.8 Extreme events analytics .. 34

4.3.2.9 Multimember/ Statistical Analysis.. 35

4.3.3. Workflow building blocks description .. 35

5. Technologies & components involved ... 36

6. Conclusions ... 37

7. Acronyms and Abbreviations ... 38

Appendix A. .. 40

ESM-Tools... 40

ESM model setup utils .. 40

4

D 5.2 Design of the Pillar II use cases
Version 1.0

1. Executive Summary
This document presents the work done in WP5 concerning the design aspects that should be
considered during the implementation of the Pillar 2 relevant use cases, in the context of the
eFlows4HPC project. These design decisions concern both the Dynamic ESM (Earth System Model)
workflow, the HPDA (High Performance Data Analytics) workflow and Feature extraction
functionalities which functional requirements were specified in the D5.1 deliverable.

By design we mean the set of technological definitions that will guide the high level design of the
software components that needs to be developed. The design is constrained to the architecture
defined for the project described in D1.1 deliverable from WP1 that is briefly described in the first
sections of this document for reference purposes.

We divide the design process in two parts; in both cases we list the involved Pillar II use cases and
then, for the ESM Dynamic workflow, we describe the workflow by providing a detailed activity
diagram at the beginning based on the steps described in the D5.1 deliverable, followed by
detailed descriptions and high level implementation details of each of the sub-workflows of the
main one, with the idea of guiding the reader through the different design aspects of the ESM
workflow steps. In a separate section we describe the design considerations of the Dynamic
Analysis part of the ESM workflow where we set the scientific grounds and different aspects that
need to be considered towards the development. For the HPDA and feature extraction use cases,
the design process consists on describing the three main workflows that were specified in the D5.1
deliverable, by providing detailed descriptions of these workflows, the involved building blocks
and its implementation details and also information concerned the CMCC-CM3 datasets that will
be used as an input.

As the final step, we provide a mapping of the involved technologies and the software stack
components.

This document will serve as a reference during the development phase, as all technical work done
in the project will be required to follow these guidelines.

2. Introduction
In this document we make a description of the overall high level design of the Pillar 2 Use Cases as
a part of the eFlows4HPC project by providing the following information:

- The involved use cases and its overall underlying design. With design we mean the set of
technical decisions that will lead to the development of the components that will be
integrated in the novel eFlows4HPC software stack, how these will interact with each other,
and the scientific background behind these design ideas.

- Information about integration with the eFlows4HPC software stack in a high level way,
implementation details concerning the novel eFlows4HPC software stack will be provided
as a form of insight for the upcoming development phase of the project with the idea to
exploit the advantages of the software stack.

5

D 5.2 Design of the Pillar II use cases
Version 1.0

- Information about involved data structures. Climate models use several types of datasets,
the idea is to provide an insight on these formats and the involved storage technologies
provided by the novel eFlows4HPC software stack.

2.1 Purpose and scope of the document
This document only applies to the eFlows4HPC Pillar II use cases and requirements, and only
includes those Use Cases identified for this working package.

2.2 Reference documents

Name of document Description

D1.1

Architecture document that describes the most important global
technical decisions taken for the implementation of eFlows4HPC
project, delivered by WP1

D5.1
Requirement document that describes a comprehensive list of
requirements, for the Pillar 2 use cases, delivered by the WP5

3. High level view of the architecture
In this section we provide a brief overview of the most relevant architectural decisions taken for
the eFlows4HPC software stack described in deliverable D1.1. These decisions will constraint and
influence the design of the software components for the Pillar 2 use cases implementation.

3.1 Overview
Figure 1 provides a high level view of the eFlows4HPC software stack modules and most relevant
components.

From D1.1 document, a workflow implementation consists of four main parts:

 A description about how the software components are deployed in the infrastructure
(provided by an extended TOSCA definition).

 A high level workflow implemented in Yorc (Ystia orchestrator) that executes the
deployment and launches different components and also executes the DLS (Data Logistic
Service) needed to move the data to be used in the simulation.

 A low level workflow implemented in the PyCOMPSs programming model that will carry
out the tasks related to the ESM simulation.

 Data logistics pipelines to describe data movement and transformations to ensure the
workflow data is available in the computing infrastructure when required.

All the related workflow artefacts such as software components, datasets and the workflow
definitions themselves will be stored in the software stack catalogues and registries (as displayed
in Figure 2).

6

D 5.2 Design of the Pillar II use cases
Version 1.0

Figure 1 - eFlows4HPC Software Stack Overview

Figure 2 - Diagram showing how the different software components of the Pillar II will be registered in the eFlows4HPC
accessibility layer

7

D 5.2 Design of the Pillar II use cases
Version 1.0

3.2 Architecture of the Pillar use-cases
In this section we describe the overall design of the software components that are going to be
developed in the upcoming phases of the project.

The workflow architecture that enables all the use cases of this WP can be broadly modularized
and managed using two applications, a workflow manager and a task manager. Workflow manager
is essentially YORC software and task manager is a Python application that heavily uses PyCOMPS
to execute its component tasks.

While the development of a workflow manager application and the choice of its components are
explored in detail as part of WP1, we supply an envisioned summary of its role to provide a context
to this document and give a perspective on interactions among components of the eFlows4HPC
software stack.

The workflow manager application coordinates and supervises a use-case workflow. The manager
application, essentially YORC software, fetches a use case specific workflow description from a
Workflow Registry. A workflow registry may contain many workflows for different use cases.

Each workflow specification, apart from describing component-tasks, their initialization, and
interactions, includes reference to a specification of underlying compute topologies that may be
used for orchestrating the tasks of a workflow. For instance, ESM simulations might use CPUs, and
its diagnostic components may use GPUs. TOSCA specification standard serves as a base-reference
to compose such a workflow’s topology descriptions involving hybrid infrastructures. The
specification has to be extended to accommodate additional ESM-specific needs of the project.
Ystia orchestrator (YORC), an envisioned core component of the workflow manager application,
uses the workflow specification to initialize necessary compute and storage resources, and
orchestrate component tasks of a workflow.

Use cases of this WP can be conveniently launched as a group of tasks by a workflow manager that
are coordinated by a task manager application. For instance, in a dynamic ESM workflow, a task
manager application coordinates a complex chain of tasks starting from fetching ESM model
sources, compilation on target architecture specification, fetching necessary input datasets,
generation of ensemble members, their simulation and associated diagnostics. Usage of resources
is monitored and any released resources can either be used by task manager or workflow manager
to launch new tasks. A task manager is essentially a Python application using PyCOMPSs to
compose component tasks.

Fetching input data, sharing data among tasks and publishing value added data of a workflow will
be handled using data logistics services.

4. Pillar II Use Cases design
In this section we provide the most relevant design aspects in the form of different diagrams,
tables and views in order to show the ideas behind these and other related technical details that
we should contemplate towards the development.

As it was described in the deliverable D5.1, the main steps (some of them may be optional) in an
order that is close to the chronological for the execution of an ESM workflow are as follows:

● Preparation of model computational mesh

8

D 5.2 Design of the Pillar II use cases
Version 1.0

● Preparation of initial conditions
● Preparation of forcing data
● Model compilation
● Preparation of model configuration
● Model run

○ Monitoring of the model run
○ Dynamic data analysis
○ Data output

● Data post-processing
● Data analysis

○ Sanity checks/ standard diagnostics
○ Scientific analysis of the data
○ Feature extraction

● Data archiving
● Data distribution

Figure 3 - High level idea of the Pillar II workflows and its three main parts

From Figure 3, there are three main parts to consider:

 The implementation of the ESM Workflow to run the concerned climate models within the
software stack;

 The implementation of the Dynamical data analysis that will lead to the member pruning
and optimization of the resources using ML techniques;

 The implementation of the HPDA and the Multi-member statistical analysis and feature
extraction that takes the output of the workflow as an input.

4.1 Scope of the Design
The intended scope will be the most relevant technical aspects we should consider towards the

development. These decisions need to be made in order to implement the mentioned use cases
for Pillar 2 taking as a base the defined architecture of eFlows4HPC.

The scope of the design will only cover the use cases mentioned in D5.1

9

D 5.2 Design of the Pillar II use cases
Version 1.0

4.2 ESM Dynamic workflow
In this section we provide a summary of the involved use cases for the implementation of the
Dynamic ESM Workflow, different diagrams and any other useful illustrations to display different
aspects of the design. This includes the first two parts, the ESM workflow and the Dynamical Data
Analysis (for the pruning of the members).

The overarching use case of the ESM dynamic workflow component of this WP is to conduct a large
number of ensembles simulations that are dynamically pruned, described succinctly in the
proposal and D5.1. With this use case as a reference, we develop components of the ESM workflow
architecture that are modular and extendable to new use cases.

The target ESM model used for the proposed use cases are OpenIFS/FESOM2, hence this section
mostly deals with this ESM.

4.2.1 Summary of involved use cases

The overarching ESM dynamic workflow use case can be broadly split into (sub) use cases, as
mentioned in D5.1. They are re-articulated here to provide a context to the following sections.

 Use case 1 (UC1): This use case aims to develop interactions among main ESM workflow
components using OpenIFS/FESOM2. Its primary purpose is to design a modular workflow
architecture for involved component tasks, namely ESM model setup, ensemble
generation, ensemble member simulation and ensemble member pruning.

 Use case 2 (UC2): This use case aims to use complex ESM workflows enabled by UC1 to
generate novel scientific applications. This will additionally involve AI based workflow
components described in the section 4.2.3.

4.2.2 Use case 1: ESM Dynamic Workflow

The following sections we provide insights about the high level design of the ESM Dynamic
workflow and provide some technical details concerning its implementation using the eFlows4HPC
software stack.

4.2.2.1 Introduction

As it was described in section 3.2, a workflow in the software stack will consist mainly in two parts:

● High level workflow that will be basically a YORC workflow (described in YAML) where we
will orchestrate how the different modules will be deployed, started and undeployed.

● Low level part implemented in PyCOMPSs for the execution of the simulation and exploit
the parallelism in the underlying HPC platform.

Taking as input the steps mentioned in section 4, we can define an activity diagram (described in
Figure 4) to illustrate the flow control of the different involved steps; some of these steps will be
involved in the high level part of the workflow and some others involved in the low level workflow.
We will indicate these details in the next sections and, for such purpose, we split the activity
diagram (Figure 4) in sub-diagrams where we provide a table with the building blocks we previously
defined during the D5.1 deliverable enriched with the matching activities and its implementation
details (based on what was mentioned in section 3.2).

We can divide a ESM Workflow in three main parts:

● The initialization

10

D 5.2 Design of the Pillar II use cases
Version 1.0

● The execution and monitoring

● The Postprocessing of the generated data and its archiving and distribution

To implement some of the activities mentioned in Figure 4, we will make use of additional tools
(see Appendix A - ESM Tools). In the following sections we also describe some of these, and the
way they will be integrated.

Figure 4 - Activity diagram displaying the overall ESM Dynamic workflow

11

D 5.2 Design of the Pillar II use cases
Version 1.0

We will also explore the development of additional features to take advantage of the novel
eFlows4HPC software stack that will contribute to the field of earth system modelling, such as
strategies of generation of ensembles using non-conventional techniques (described in Section
4.2.2.5) and improvements on the ESM data diagnostics by using data-diagnostic driven tasks and
innovative storage solutions (described in Section 4.2.2.6).

4.2.2.2 Workflow Initialization

The following activity diagram (Figure 5) shows the initialization part of the workflow described in
Figure 4 each of the defined activities in the diagram maps with one or more building blocks of the
ESM workflow, specifically the ones concerned with the initialization.

Figure 5 - Diagram corresponding to the initialization part of the ESM workflow prior execution.

For the initialization part, most of the concerned activities will be carried out by the high level part
of the ESM-Workflow, that is basically a Yorc orchestration (see sections 3.1 and 3.2), because
most of these activities concern the fetch and deployment of software components and the
datasets needed to run the model from the software stack repositories.

For some of the tasks to be performed during the initialization, such as the compilation of all the
model components on the target platform, we will make use of the esm-tools libraries (described
in Appendix A - ESM-Tools) that we will adapt to fit the architecture of eFlows4HPC software stack.

The building blocks concerning the initialization of the ESM-Workflow are displayed in the
following table:

12

D 5.2 Design of the Pillar II use cases
Version 1.0

Table 1 - Involved building blocks from D5.1 requirement document for initialization

Building
Block

Name Activity Included
actions

Input/Output data
structure

Implementation details

1

Deployment of

ESM model

configuration

Setup

configuration

Creation

and

modificati

on of

configurati

on files.

Input: general

configuration files.

Output: configuration

files adjusted for

specific model

simulation deployed

to target location

Once the user has defined the

parameters and settings for the ESM

ensemble to be run, these files need to

be deployed, this will be achieved by

executing an activity in Yorc that will

transfer the configuration files to the

target location.

The location of these files may be

initially at the local file system of the

user or some other repository provided

for such purpose.

2

Preparation of

model

computational

grid (mesh)

Acquire Mesh

Data

Discovery

of data

location.

File copy,

grid

partitionin

g if

needed.

Input: mesh

resolution, mesh type

Output: mesh files,

ASCII/netCDF, grid

partitions.

The meshes or grids are defined in the

configuration files for the ESM

experiment, for both the ocean and

atmosphere components.

These components will be retrieved and

deployed defining a Data logistic

pipeline managed by the DLS (described

in Section 3.2), in case the mesh doesn't

exist or the partitions need to be

generated, it will be done through the

proper logic in the previously

mentioned pipeline.

3

Preparation of

initial

conditions

Acquire initial

conditions

Data

Discovery

of data

location.

File copy,

sometime

s pre-

processing

to fit the

grid.

Input: Climatology or

fields from other

simulations (ASCII,

NetCDF)

Outputs: Climatology

or fields from other

simulations (ASCII,

NetCDF)

The initial conditions defined in the

configuration for the ESM experiment

will be retrieved and deployed through

a DLS invocation.

We will apply at this step some of the

new perturbation strategies such as

Randomly perturbed initial conditions

(see Section 4.2.2.5) with the goal of

generating proper ensembles; these

strategies will be implemented as data

transformation pipelines.

In case that some preprocessing is

needed to fit the specified grid, this will

be done through the same data

transformation pipeline described

previously.

4

Preparation of

forcing data

Acquire Forcing

Data

Discovery

of data

location.

File copy,

sometime

s pre-

processing

to fit the

grid.

Input: Forcing fields

of different types

(ASCII, NetCDF)

Outputs: Forcing

fields of different

types (ASCII, NetCDF)

fitted to the grid.

If the ESM experiment specifies in its

configuration files that a given forcing

dataset should also be used , then these

files will be retrieved and deployed

through a DLS invocation, in case that

some preprocessing is needed to fit the

specified grid, this will be done through

a data transformation pipeline within

the same invocation.

5
ESM model

compilation
Compile model

Compilatio

n of all

Input: Model name,

Model version,

13

D 5.2 Design of the Pillar II use cases
Version 1.0

 model

componen

ts, linking

libraries.

Output: model

executable.

The model sources will be retrieved by

the Ystia orchestrator (Yorc) by defining

a TOSCA activity that will get the sources

and all needed components from the

software stack software catalog.

Within the same activity will do the

compilation and linking of all model

sources by using an adapted version of

the compilation tools currently

presented in the esm-tools (see

Appendix A).

Preconditions: All the datasets, model components are correctly configured in the software stack
registries and repositories, the configuration for the experiment is already defined and validated

Postconditions: All the needed data is in place and the model already compiled with the specified
settings (ESM workflow ready to run)

4.2.2.3 Workflow Execution & Monitoring

In the previous section it was mentioned how the different model components and initialization
data will be fetched and deployed prior the execution of the simulation, The following activity
diagram (displayed in Figure 6) shows the execution and monitoring part of the workflow described
in the Figure 4

Figure 6 - Diagram corresponding to the execution part of the ESM workflow.

14

D 5.2 Design of the Pillar II use cases
Version 1.0

The execution part involves the low level part of the workflow, the task manager provided by the
software stack (PyCOMPSs/COMPSs - see Section 3.2) will be in charge to launch the different
tasks to execute the simulation and exploit the parallelism in the underlying supercomputing
platform. The monitoring part has sides in both, the high and low level workflows, monitoring
mechanisms are provided by the software stack, at the high level by Yorc orchestrator and low
level by PyCOMPSs.

The results of the dynamic data analysis are accessed periodically during the execution, after a
certain number of timesteps have been executed. Such analysis is executed in parallel along with
the ensemble and its results stored in Hecuba (see section 4.2.3 for further details).

For running the ESM model we will make use of the esm_runscripts (see Appendix A - ESM-Tools)
that we will adapt to fit the underlying architecture and to exploit the new possibilities of the novel
eFlows4HPC software stack.

In Table 2 we show the activities defined in Figure 6 and the matching building blocks from D5.1
with some more details concerning the implementation of these activities.

Table 2 - Involved building blocks from D5.1 requirement document for execution & monitoring

Building
Block

Name Activity Included
actions

Input/Output
data structure

Implementation details

6

ESM

model

execution

Execute ESM

single run or

Ensemble

Execution of

the model on

available

resources (see

also 5.2 and 5.3

from D5.1).

Input: grid,

initial

conditions,

forcing

(netCDF, ASCII)

Output: model

results Hecuba

data snapshot,

check points,

monitoring

results, logs

Model execution will be implemented fully in

PyCOMPSs, we can see PyCOMPSs as an

additional layer for execution (see Section 3.2

for further information),

The esm_runscripts tools (see Appendix A.)

will be used to run the simulation. These are

Python scripts and will be integrated with

PyCOMPSs.

Check ESM

member status

Online data

analysis (see

5.2 from D5.1).

Input:

Experiment ID

Output: array

with the

members to be

discarded

A PyCOMPSs script will be generated to check

the state of the running ESM members in

Hecuba, this will trigger the pruning and

release of the resources.

Data output

to storage

Online data

analysis (see

5.2 from D5.1).

Input: raw

model data

Output:

Hecuba data

format

Intermediate results will be stored in Hecuba.

For such purposes I/O Routines of FESOM2

will be adapted to save the raw model data

to Hecuba as part of the implementation of

the Data Diagnostics Utils (see Section

4.2.2.6).

These changes will also be used to facilitate

the dynamic analysis and the pruning process

(see Section 4.2.3).

During the post-processing phase, this data

will be converted to NetCDF format or other

convenient standard.

15

D 5.2 Design of the Pillar II use cases
Version 1.0

Execute

Member

pruning

Online data

analysis (see

5.2 from D5.1).

Input: array

with the

members to be

discarded

Output: N/A

The pruning of the members will also be

carried out fully in PyCOMPSs and also it will

be implemented the removal of the data

generated by the pruned members and the

release of the used resources by these.

Monitor ESM

Ensemble run

Monitoring of

the results, and

execution.

Resubmission

of jobs.

Input:

Experiment ID

Output: Status

information of

the ongoing

simulation

Monitoring mechanisms both for the low and

high level workflows will be provided by the

software stack.

Preconditions: All model components are deployed and correctly configured, the settings for the
experiment were validated and all allocations have been made.

Postconditions: Climate model simulation executes successfully and all the results are ready in the
storage.

4.2.2.4 Workflow Post-Processing & disposal

In this section we describe the last part of the workflow (displayed in Figure 7) that concerns the
post-processing of the generated data and disposal of the used resources by the simulation, at this
stage, we already have the outputs of the simulation in the file system of the HPC (usually located
in the scratch of the HPC) or in Hecuba, ready for use.

Figure 7 - Diagram corresponding to the post-processing and data handling parts of the ESM workflow

16

D 5.2 Design of the Pillar II use cases
Version 1.0

For the post-processing part, most of the logic will be implemented in the low level part of the
workflow (PyCOMPSs - see section 3.2 for further details); these scripts will make use of the Data
Diagnostics utils (Described in Section 4.2.2.6). After the post-processing and sanitization of the
data have took place, it can be either the entry point to other workflows for further scientific
analysis such the HPDA and Feature extraction (described in section 4.3) or the data can be just
archived and the used resources released (removal of scratch folders used by the simulations,
uninstall of all model software components among other things). These tasks will be part of the
high level workflow that will deal with data logistics services and the TOSCA activities concerning
the undeployment and release of the used resources.

In table 3 we show the activities defined in figure 7 and the matching building blocks from D5.1 (as
it was done in the previous sections) with some more details concerning the implementation of
these activities.

The workflows concerning HPDA and Feature extraction are fully described in section 4.3 of this
document.

Table 3 - Involved building blocks from D5.1 requirement document for the post-processing

Building
Block

Name Activity Included
actions

Input/Output data
structure

Implementation details

1

Initial

data post-

processin

g

Execute

post-processing

Conversion of

data to

different

formats for

further

analysis.

Deriving

additional

variables

Adding

metadata

Data transfer

to disc

partition

where they

can be

analysed.

Initial

archiving

Input: model data

snapshot in Hecuba

format.

Output: post processed

data transferred to disc

partition where

analysis can be

performed (netCDF,

zarr)

The final result is the data fully

prepared for further scientific

analysis, the post-processing will

be implemented in PyCOMPSs

taking advantage of having the

data stored in Hecuba, logic for

performing data conversions (for

example from Hecuba format to

NetCDF), deriving additional

variables and adding metadata in

case is needed will be

implemented as part of the Data

Diagnostics utils development (See

Section 4.2.2.5).

Any transfer needed for moving

the data to a different location

before executing the post-

processing will also be handled by

PyCOMPSs code.

2
Data

analysis

Conduct sanity

checks of the

data

initial sanity

check

Running

standard

diagnostics

Interactive/ex

ploratory DA

Scientific

analysis (e.g.

Input: Post-processed

data (netCDF, zarr)

located in the local file

system.

Output: Results of data

analysis as data files

netCDF, ASCII or

images.

The sanity checks will be

implemented the same way, in

PyCOMPSs as part of the Data

Diagnostics utils (see Section

4.2.2.5).

This also can be the entry point

(optionally) for the HPDA feature

extraction workflow (see section

4.3 for further information).

17

D 5.2 Design of the Pillar II use cases
Version 1.0

Feature

extraction,

see 5.3 from

D5.1)

3
Data

archiving
Archive data

Copy data to

archive

Record

information

on where data

can be found

and how they

can be

retrieved.

Input: Post-processed

data (netCDF, zarr)

Output: Same data, but

located in the target

location where these

should be stored.

After all the data has been post-

processed and sanitized, these

should be removed from the HPC

file system and archive for later

usage and further analysis. At this

stage all computations were

completed and the results can be

transferred via data logistic

services defined for such purpose

(DLS) in the high level workflow.

After all the data is transferred,

Yorc will execute the stop and

undeployment of the used

components and remove these

from the HPC. the same of the

scratch folders used in the

simulations.

Preconditions: at member level, all the computational steps of the simulation have been
performed and the generated data by the simulation is already in the storage.

Postconditions: data is post-processed and moved to the target location, and then the involved
components are undeployed in the case is the last member of the ensemble being running

4.2.2.5 Ensemble generation utils

A commonly used approach to generate ensembles involves methods used in the research domain
of data assimilation such as ensemble Kalman filter [1]. Here we wish to explore ensemble
generation strategies that uniquely exploit the architecture of eFlow4HPC and also enable novel
use cases.

● Randomly perturbed initial conditions: This simple methodology involves applying random
perturbations guided by anomalies from a climatology (renalysis/observations) to the input
datasets of an ESM. While this is not necessarily the best strategy to generate an ensemble
it is easiest to implement and can be used as an initial test case to foster development and
integration of workflow components.

● Perturbed parameter based ensembles: Parametrizations used in ESM models represent
unresolved processes usually involving parameters that are hard to constrain. Perturbing
these parameters can be used to generate model ensembles having a desirable, clear
association to the physical process. Such ensembles can be used to explore (non-linear)
interactions among modelled physical processes and may additionally contribute to an ESM
model development (eg., tuning). As such, understanding valid bounds of parameters is of
high scientific relevance. Despite these benefits, any reasonable exploration of a state
space of parameters of an ESM (several tens) often poses computational challenges.
Envisioned workflow architecture of this WP may be used to address this challenge. For
instance, starting with a set of parameter perturbations, ML methods may be used on
model data to predict best directions to drive the subsequent set of ensembles.

18

D 5.2 Design of the Pillar II use cases
Version 1.0

● Grid configuration based ensembles: FESOM2, ocean model component of target ESM,
OpenIFS/FESOM2 employs an unstructured grid. This allows novel ensemble generation
strategies where each ensemble member might have enhanced resolution over different
spatial regions while keeping the number of computational grids constant. This might allow
effective exploration of parametrization’s scale interactions and teleconnections.

4.2.2.6 Data diagnostics utils

ESM data is often subject to mandatory post processing steps before any scientific use. This
separation is mainly done to improve computational efficiency of an ESM. For instance, in the case
of the atmospheric component model, OpenIFS, used in our target model OpenIFS/FESOM2, it is
preferable to save state variables (e.g, vorticity and divergence) in their native spectral space to
reduce the number of, compute-intensive, spectral to grid-space transformations during model
computations.

Such post processing steps and other ESM data driven pipelines (such as described in section 4.3
and generation of value added products) can be composed as data-diagnostic tasks in an ESM
workflow. A conventional and simple approach to enable such a ESM data driven pipeline is to
save model output as a file in the filesystem and share it across the diagnostic tasks. But, this often
limits the use of heterogeneous computational architectures envisioned in workflows of
eFlows4HPC, as each task needs the underlying filesystem to be mounted. We intend to overcome
such restrictions by exploring a novel strategy by directly ingesting the data from an ESM into a
database that is exposed via a network-accessible API available across all the diagnostic tasks. A
proof of concept based on Python, layered on Hecuba, will be developed to explore this aspect.

There has been some initial work in this regard using the OpenIFS model, to ingest data directly in
Hecuba. A similar implementation in the FESOM2 model needs to be explored before integrating
the entire ESM and benchmarking the performance of this approach.

In summary this data diagnostics component represents a broad framework that facilitates (any)
ESM simulation data driven pipelines. Such ESM data driven pipelines are explored in Use case 2,
described below.

4.2.3 Use case 2: Dynamical Data Analysis
In this section we describe the initial design and underlying scientific process of the Dynamical
Data Analysis that will lead to the optimization of the ESM ensemble in terms of used resources.
The functionalities concerned are the ensemble member data analysis and the pruning of the ESM
members based on the previous analysis done on the intermediate data of the ensemble.

4.2.3.1 Introduction

Pruning an ensemble member involves composing a pipeline of data diagnostics tasks that lead to
a binary metric that is used to make a decision on continuation of the simulation. The metric, at
the least, involves determining the validity of the simulated climate state and an estimate of
contribution of an ensemble member to (ensemble) prediction skill of the model. A key challenge
is to determine the temporal-point of simulation (lead time) to make a decision to prune.

Simplest metric to evaluate the validity of the climate state of an ESM is to compute the global
mean, minimum and maximum for a variable such as surface air temperature (a reasonable proxy
for evaluating a coupled ESM). This is especially relevant for perturbed parameter based
ensembles where there are no guarantees to ensure a valid climate. Similarly, (temporal) signal to

19

D 5.2 Design of the Pillar II use cases
Version 1.0

noise ratio (ensemble standard deviation versus ensemble mean of a variable) may be used as an
estimate to evaluate contribution of an ensemble member to the (ensemble) prediction skill.

Hindcast experiments allow additional pruning strategies, such as using standard prediction skill
scores (e.g, mean square error with respect to reanalysis). These can be used in synergy with
perturbed parameter ensembles to determine valid parameter bounds that are of high scientific
relevance.

In the next sections we provide more insights about the implementation of the assessment and
how this will be calibrated and optimized to achieve good results through scientific
experimentation.

4.2.3.2 Ensemble Member data analysis

The analysis of the intermediate ensemble member data will be based on a separate process from
the ESM workflow itself that will run in parallel, executing periodically while the simulation
progresses. So both will be independent. The logic will be in low level workflow (PyCOMPSs - see
section 3.2), and the data produced by the analysis will be consumed by the ESM Workflow in
order to execute the pruning of those members that are not useful. In table 4 we can see the
associated building blocks defined in D5.1 deliverable together with high level implementation
details.

Table 4 - Involved building blocks from D5.1 requirement document for the Dynamic analysis & pruning

Building
Block

Name Included
actions

Input/Output data
structure

Implementation details

1

Initialization

of the ESM

Member

Diagnostic

component

The diagnostic

component

prepares

Hecuba

database for

the run

Input: Ensemble

configuration files,

Initial values for the

variables to be used

(optionally)

Output: N/A

The creation of the Hecuba database instance for the

simulation will be done at the beginning of the

execution of the ensemble as a prior task before

executing any simulation task. it will be implemented as

a PyCOMPSs task.

Config files will be loaded to retrieve useful information

to determine some parameters needed for the

initialization; these parameters are outlined below in

this section.

3

The ESM
member
diagnostic
component
conducts
the
assessment
on the data
of the
ensemble
members

Data is

retrieved from

Hecuba

database to

conduct the

assessment

Input: experiment id,

intermediate model

data in Hecuba

format

Output: a list of the

members that should

be discarded stored in

Hecuba

After a certain number of time steps of the simulation

have been executed (initial threshold to start launching

the assessments is reached), the analysis will be

conducted periodically every n time steps, the

definition of these parameters is outlined below this

section.

The logic itself will be implemented in PyCOMPSs in

combination with Hecuba, where this information will

be stored.

Preconditions: Hecuba and PyCOMPSs runtime are up and running

Postconditions: the database structure is initialized for the ESM ensemble to be run and is ready
to be used.

For the initialization part and for the dynamical analysis itself, it is necessary to contemplate the
definition of the following variables in the configuration files:

20

D 5.2 Design of the Pillar II use cases
Version 1.0

● ESM_DA_STARTING_POINT: An initial starting point to conduct the analysis will be also
needed. In D5.1 it was pointed out that conducting the assessment in a very early stage of
the simulation may lead to inaccurate results.

● ESM_DA_FREQ: The Dynamic data analysis (as it was mentioned in the table 4) will execute
every n time steps. The determination of frequency by which this analysis will be executed
(the number of time steps between each analysis conducted) will be determined
experimentally. Setting it too small may lead to an unnecessary overhead and if it is too big
the assessment results may be inaccurate and members that may produce useful data may
be discarded when they should not.

● ESM_DA_VARS: The list of model variables that will be used to conduct the assessment,
these will be determined by climate scientists in principle, but we can take those that
accumulate value over time as an initial approach, such as total precipitation (meters of
water equivalent per day) also it is important to limit these to a little number since if we
set a huge list it can be very resource consuming.

● ESM_DA_THRESHOLD: The value that determines when to discard a given member based
on the assessment done. This will also be subject to experimentation to find a proper value.

These variables will be calibrated as a part of the scientific experimental process by running
successive ESM simulations with and without the member pruning enabled and these will be
compared in order to improve performance of the method.

As it was mentioned in D5.1, the main goal of the assessment is to discard members that will not
add anything to the whole ensemble simulation. This can be very useful in huge simulations to
release used resources by these members so it can be re-distributed and re-assigned to other
processes. There can be two situations concerning the members, either one is too similar to any
of the other members (the trend is convergent), or its values are outliers (the trend is divergent -
see Table 5 and Figure 8 as example).

4.2.3.3 Similarity criteria

Initially, the idea will be to use accumulated variables as it was pointed out in the previous section
(those model variables that aggregate over the time during the length of the simulation), such as
total precipitation or Surface Solar Radiation (SSR) for example. We need to define a similarity
criteria in order decide when to mark an executing ESM member for disposal, in order to say how
similar or different are two given members in one of its dimensions (a given variable) we can apply
a similarity algorithm such as Jaccard similarity [2] or other similar method to calculate how these
relate to each other. There are several algorithms for estimating the similarity of a vector of values
and several options may be considered since these may impact the performance of the simulation
as well so it may be needed to explore different alternatives to find an equilibrium of performance
and effectiveness on removing non useful members.

If after a certain number of timesteps, the assessment results on a member whose similarity
coefficient compared to the others is bigger than the defined threshold, it will be marked for
disposal.

The initial assessment will be based, as mentioned before, on accumulated variables. But the idea
is to create a more sophisticated mechanism to use other type of variables and also machine
learning techniques to do a more optimal assessment, at this stage it is to early to describe a
solution based on machine learning, but it will be envisioned on the upcoming development

21

D 5.2 Design of the Pillar II use cases
Version 1.0

phases of the project with the goal to exploit at maximum the capabilities provided by the different
techniques and the functionalities provided by the eFlows4HPC software stack.

Table 5 - sample values through the timesteps of a simulation for an accumulated variable with a divergent tendency

Members

Time Steps

(days)

1 10 20 30 40 50 60

fc0

Total

precipitation (m

of water

equivalent per

day) 10 22 34 37 39 41 45

fc1

Total

precipitation (m

of water

equivalent per

day) 9 30 44 45 67 80 101

fc2

Total

precipitation (m

of water

equivalent per

day) 11 21 30 32 37 46 48

fc3

Total

precipitation (m

of water

equivalent per

day) 12 23,4 27 36 40 48 50

fc4

Total

precipitation (m

of water

equivalent per

day) 14 25 28 32 42 43 45

22

D 5.2 Design of the Pillar II use cases
Version 1.0

Figure 8 - Divergent member example for a ESM simulation of 5 members per date to show divergence

4.2.4 Data model

FESOM2, the ocean model component of the target coupled ESM model, OpenIFS/FESOM2, uses
an unstructured triangular grid configuration, unlike most contemporary ESM models. Its grid
configuration, best shown in FESOM2 model documentation [3], differs for scalar and vector
variables. As an example, data structure representing model output for a scalar variable is shown
below as header of common data format (equivalently NetCDF).

dimensions:

 nelem = 243899 ;

 three = 3 ;

 nod2 = 126858 ;

 nz = 48 ;

 nz1 = 47 ;

 time = 10 ;

variables:

 uint faces(nelem, three) ;

 double lat(nod2) ;

 lat:_FillValue = NaN ;

 lat:long_name = "latitude" ;

 lat:units = "degrees_north" ;

 double lon(nod2) ;

https://fesom2.readthedocs.io/en/latest/geometry.html#the-placement-of-variables

23

D 5.2 Design of the Pillar II use cases
Version 1.0

 lon:_FillValue = NaN ;

 lon:long_name = "longitude" ;

 lon:units = "degrees_east" ;

 double nz(nz) ;

 nz:_FillValue = NaN ;

 double nz1(nz1) ;

 nz1:_FillValue = NaN ;

 int64 time(time) ;

 time:axis = "T" ;

 time:long_name = "time" ;

 time:standard_name = "time" ;

 time:stored_direction = "increasing" ;

 time:units = "days since 1948-12-30T23:15:00" ;

 time:calendar = "proleptic_gregorian" ;

 float temp(time, nod2, nz1) ;

 temp:_FillValue = NaNf ;

 temp:description = "temperature" ;

 temp:long_name = "temperature" ;

 temp:units = "C" ;

 temp:coordinates = "lat lon" ;

While such a grid structure provides novel opportunities (e.g, ensembles based on refining mesh
over different regions described in Section 4.2.2.5), it poses additional challenges for computation
of data diagnostics. This is because, the most commonly used post-processing tools, as yet, do not
allow easy processing and visualization of data on an unstructured grid.

Pyfesom2, a software package used to analyse FESOM2 model output, aims to address this
challenge by providing an interface to commonly used tools (in Python) and by providing
commonly used diagnostic and visualization methods on an FESOM’s unstructured grid. To allow
envisioned data diagnostics of this WP, it is necessary to contribute to the software development
of Pyfesom2.

4.3 Statistical analysis and feature extraction
This section describes the design of the statistical analysis and feature extraction part of the Pillar
II workflow and the involved components and data structures.

https://pyfesom2.readthedocs.io/en/latest/

24

D 5.2 Design of the Pillar II use cases
Version 1.0

4.3.1 Summary of involved use cases

The following sections describe the three main workflows supported by the feature extraction (TCs
- Tropical Cyclones) use case of Pillar II. A more detailed description of the various building blocks,
the interaction among the components and the structure of the involved data is provided in the
next section.

As already mentioned in section 3.2, the entire workflow deployment, initialization and
management will be performed by the upper layer of the eFlows4HPC software stack managed by
YORC and PyCOMPs; specifically YORC will take care of the deployment and initialization of the
workflow while PyCOMPS of the orchestration and execution of the different subtasks.

More in detail, the first use case represents the base scenario where the analysis of TCs tracks is
applied on the output of a single model (in this case the CMCC-CM3 ESM), the second one
represents a more integrated approach where the analysis of TCs tracks is performed jointly with
the HPC model execution (again the CMCC-CM3 ESM), while the third use case focus on the multi-
model analysis of TCs tracks in the context of climate data from the CMIP6 experiment. The
Coupled Model Intercomparison Project phase 6 (CMIP6) experiment will deliver to the scientific
community more than 20PBs of data from climate simulations, which means around 10 times more
than the previous phase (CMIP5). The CMIP6 archive provides access to multiple variables with
different time and spatial resolutions. In the context of the TC detection analysis, we are interested
in the data with the highest resolution (6-hourly data at ¼ degree).

Tropical cyclone detection and tracking can be done by following different tracking methods
available in literature (i.e., deterministic approaches) and also by investigating new Machine
Learning approaches, to verify the possibility to speed-up the detection process in the contest of
a multi-model/multi-member analysis. The following use cases will take into account and compare
different approaches with respect to metrics such as accuracy, performance, etc.

4.3.1.1 Use case 1: CMCC-CM3 datasets

Figure 9 - Use case 1 based on CMCC-CM3 datasets

This first workflow consists of the execution of the feature extraction (Tropical Cyclone detection
and tracking procedures and extreme events analysis) on the CMCC-CM3 datasets, already
available on storage as input of the subsequent steps. The following phases are then executed:

25

D 5.2 Design of the Pillar II use cases
Version 1.0

● Pre-processing: includes a set of preliminary steps to organize/modify/regrid the data
accordingly for the following substeps;

● TC Detection and tracking: consists of different approaches (e.g., deterministic and
data-driven) for TC detection and tracking. This block produces as output additional
higher-level products that can complement the model output;

● Statistical analysis and validation: this step will perform a set of analysis on the output
produced by TCs detection/tracking stage, as well as comparison with observational
data in order to validate performance (in terms of accuracy) of the various approaches.
The output of this step will consist of additional features extracted from the TCs
detection/tracking phase.

It is worth mentioning that the ML TC Detection/Tracking block consists of two different stages: a
training phase executed offline (outside the workflow execution), where the model is fitted based
on reanalysis data (e.g., ERA5), and an inference stage, which is part of the workflow and is
executed on the pre-processed CMCC-CM3 data.

The generality of the workflow structure could also allow an easy integration of additional analysis
blocks for feature extraction from the model output data (third branch), for example concerning
extreme events analysis.

4.3.1.2 Use case 2: CMCC-CM3 runtime

Figure 10 - Use case 2 based on CMCC-CM3 datasets produced at runtime

The second workflow consists of a more integrated scenario where the analysis pipeline is
executed on the data produced by the model at running time; the single blocks of the workflow
are similar to those defined in use case 1. The pre-processing block in this case gathers the required
input data during the model execution. The model simulation and the feature extraction phase run
asynchronously in order to incrementally produce the feature extraction results along with the
model data

26

D 5.2 Design of the Pillar II use cases
Version 1.0

4.3.1.3 Use case 3: CMIP6 datasets

Figure 11 - Use case 3 based on CMIP6 datasets

Similarly to the first use case, this workflow starts from the CMIP6 multi-model experiment data
already available on the storage. The workflow consists of multiple independent branches
executed on different models (e.g., HighResMip) and experiments (historical, future) from the
CMIP6 dataset.

The branches can be executed independently and concurrently. Each branch performs the same
steps reported in use cases 1.

A final additional step is then performed on the whole set of intermediate results produced from
the various models in a multi-model (ensemble) analysis.

4.3.2 Workflow building blocks description

This section provides a detailed description of the various building blocks involved in the workflows
presented in the previous section.

In particular, the following blocks will be described in terms of characteristics, input data, output
data and computational requirements:

● CMCC-CM3 model run;

● the different pre-processing phases (able to prepare the datasets for the subsequent
analysis);

● the Tropical Cyclones detection modules, based on a Machine Learning and on a
deterministic approach;

● the analytics modules, respectively the Extreme Events analysis and the multi-
member/statistical analysis phases.

Specifically, concerning the Tropical Cyclones detection exploiting a ML approach, a preliminary
training phase is needed in order to set up the proper Neural Network and the related

27

D 5.2 Design of the Pillar II use cases
Version 1.0

hyperparameters. This phase is not included into the workflow execution at run time and it is
reported as a separated section (paragraph 4.3.2.1).

4.3.2.1 Machine Learning TC detection training

As previously mentioned, the pre-processing stage implements the operations to prepare the ESM
data for the following steps.

The ML-based TC analysis relies on two different phases that are Training and Feature Extraction
(Inference).

● Training phase: the TC detection model is implemented, trained and validated on historical
TCs data (ERA5 and IBTrACS).

● Feature Extraction (Inference phase): the final trained model is used, into the workflow, to
detect TCs on the output of CMCC-CM3 and CMIP6 models.

The training is decoupled from the workflow and represents a prerequisite, while the feature
extraction (inference) phase is reported in the next subsections.

The training phase aims at developing a Convolutional Neural Network (CNN) architecture that is
able to learn to detect spatial-invariant TCs patterns from historical tracks exploiting the selected
climatic fields (as specified in the pre-processing phase). This phase is totally decoupled from the
workflow and performed only once. The design of the CNN is ongoing.

Two sub-stages can be identified: preparation of the data and the Neural Network model training.

Pre-processing for the training phase

INPUT DATA

● The IBTrACS (International Best Track Archive for Climate Stewardship) dataset provides
best track metadata on historical worldwide TCs extreme events

■ Spatial coverage: Global

■ Temporal coverage: 1842 to present

■ Selected geographical domain: 0–70 °N, 100–320 °E

■ Selected temporal domain: 1979 to present

■ Temporal resolution: a record every 3 hours

■ Extracted fields: SID (Storm ID), NAME, ISO_TIME, BASIN, LAT, LON

For each selected IBTrACS record, the following climatic maps have been downloaded (one
map every 3-hours):

○ ERA5 hourly data on single levels from 1979 to present

■ Spatial coverage: Global

■ Temporal coverage: 1979 to present

■ Selected geographical domain: 0–70 °N, 100–320 °E

■ Selected temporal domain: 1979 to present

■ Horizontal resolution: 0.25° x 0.25° (~25 km x ~25 km)

■ Temporal resolution: 1 hour

28

D 5.2 Design of the Pillar II use cases
Version 1.0

■ Extracted fields: 10m wind gust since previous post-processing,
Instantaneous 10m wind gust, Mean Sea Level Pressure, Sea Surface
Temperature

Notes:

➢ “10m wind gust since previous post-processing” climatic field provides, for
each grid point, information about the 10m wind gust peak in the last hour.
This field has been processed to extract the maximum 10m wind gust within
the past 6 hours

➢ There is a 1:1 correspondence between the downloaded ERA5 maps and
each record of the IBTrACS dataset

○ ERA5 hourly data on pressure levels from 1979 to present

■ Spatial coverage: Global

■ Temporal coverage: 1979 to present

■ Selected geographical domain: 0–70 °N, 100–320 °E

■ Selected temporal domain: 1979 to present

■ Horizontal resolution: 0.25° x 0.25° (~25 km x ~25 km)

■ Temporal resolution: 1 hour

■ Extracted fields: (Relative) Vorticity at 850 hPa, Temperature at 300 hPa,
Temperature at 500 hPa

In the selected geographical domain, 2281 TCs have been identified from the IBTrACS dataset in
the 1979–2020 period, for a total of 141375 IBTrACS records that correspond to 3-hours resolution
tracks. Then, 66527 ERA5 climatic maps related to the aforementioned climatic variables have
been gathered from the Copernicus CDS (Climate Data Store). As an example, a map of Mean Sea
Level Pressure (14/9/2019 h. 18.00) has been gathered from the ERA5 dataset according to the
information provided in IBTrACS. As shown in the map, the IBTrACS metadata evidenced the
presence of two TCs in the considered domain that have been highlighted through dashed red
boxes.

Figure 12 - Map related to a TC detection (14/9/2019 h. 18.00)

29

D 5.2 Design of the Pillar II use cases
Version 1.0

OUTPUT DATA

● A NetCDF file for each 3-hourly IBTrACS TC record that integrates the extracted climatic
fields from “ERA5 hourly data on single levels from 1979 to present” and “ERA5 hourly data
on pressure levels from 1979 to present” for the selected spatial domain

● Additionally, for each TC occurrence in every NetCDF file, a total of 4 patches of size 40 x
40 points each, are generated according to the following procedures:

○ DYNAMIC PROCEDURE: for each TC, it crops from the climatic map one patch
containing the TC nearly in its center and a second patch that does not contain the
TC

○ STATIC PROCEDURE: for each TC, it crops from the climatic map one patch
containing the TC in a random position within it and a second patch that does not
contain the TC

Notes:

➢ In order to retain the correspondence between the TC center Latitude/Longitude
coordinates and its position within the patch, a georeferencing mapping process
has been applied. Specifically, latitude and longitude coordinates have been
discretized on the 0.25° x 0.25° ERA5 grid and then converted to the patches
coordinates reference system (pixels)

➢ These procedures act as data augmentation techniques that can be helpful in the
training process of the NN for improving the accuracy and to avoid overfitting

COMPUTATIONAL REQUIREMENTS

● No particular computation requirements are needed

● Storage required:

○ ≥ 240 GB (ERA5 Maps, NetCDF format)

○ ≥ 20 GB (ERA5 patches, NetCDF format)

Training phase

INPUT DATA: IBTrACS records of historical TCs tracks in terms of Latitude and Longitude
geographical coordinates of the TC center (output variable/target variable)

Patches of 40 x 40 points each, corresponding to the extracted ERA5 climatic fields (input
variables/features)

OUTPUT DATA: Trained model (model and weights saved in HDF or other formats to allow
portability)

COMPUTATIONAL REQUIREMENTS:

Hardware requirements: The Training phase requires 1 compute node equipped with 4 x GPU.

Software requirements: The Training procedure will be carried out using Python v3 based on the
Keras API and relying on TensorFlow backend. Additionally, the use of the EDDL framework will
also be investigated.

30

D 5.2 Design of the Pillar II use cases
Version 1.0

4.3.2.2 CMCC-CM3 simulation run

CMCC-CM3 is the latest model version under development at CMCC, based on the previous version
of the CMCC-CM2 coupled climate model [7,8], largely based on the Community Earth System
Model (CESM) project (http://www.cesm.ucar.edu) operated at the National Centre for
Atmospheric Research (NCAR) in the United States, and used to run CMIP6 simulations following
both simulation scenarios and HighResMIP protocols. The important and strategic difference with
the NCAR coupled model is the oceanic component, which is based on Nucleus for European
Modelling of the Ocean (NEMO) model. In CMCC-CM3, the atmospheric component is the CAM6
and the ocean component is NEMO 4.0. The adopted spatial resolution is ¼ degree, corresponding
to about 25 km grid spacing.

INPUT DATA: netcdf data representative of the radiative forcing gas concentration are needed,
together with initial conditions for the atmosphere, ocean and ice model components.

OUTPUT DATA: model output is collected as monthly files. In the atmospheric component
different files are created for each month, corresponding to different time frequency output (from
6-hourly to daily and monthly), containing different multidimensional (latitude x longitude x
vertical level x time) fields. For the ocean component the maximum time frequency saved is the
daily one.

COMPUTATIONAL REQUIREMENTS: about 1000 CPUs are required to run one model year in two
day real time on CMCC Zeus supercomputer. Also about 165GB of model output is generated for
each year of simulation.

4.3.2.3 Pre-processing for Machine Learning (inference) TC detection

This block of the workflows takes care of preparing the data for the Machine Learning-based model
(inference phase) for Tropical Cyclone detection.

INPUT DATA

● CMCC-CM3 data (Use cases 1 and 2)

Table 6 - Correspondence between CMCC-CM3 and ERA5 climatic fields

CMCC-CM3 ERA5

WSPDSRFMX 10m wind gust since previous post-
processing (fg10) (*)

(**) Instantaneous 10m wind gust (i10fg)

PSL Mean Sea Level Pressure (msl)

(***) (Relative) Vorticity at 850 hPa (vo)

T300 Temperature at 300 hPa (t)

T500 Temperature at 500 hPa (t)

TS Sea Surface Temperature (sst) (*)

http://www.cesm.ucar.edu/

31

D 5.2 Design of the Pillar II use cases
Version 1.0

* This variable can be omitted from the analysis if necessary, since it is not a standard
predictor for the TCs detection task.
** This field needs to be stored during CMCC-CM3 execution.
*** Computed in post-processing.

● CMIP6 data (Use case 3)

Table 7 - Correspondence between CMIP6 and ERA5 climatic fields

CMIP6 ERA5

– 10m wind gust since previous post-
processing (fg10) (*)

wind speed (sfcWind) Instantaneous 10m wind gust (i10fg)

air pressure at mean sea level (psl)** Mean Sea Level Pressure (msl)

atmosphere relative vorticity (rv850) (Relative) Vorticity at 850 hPa (vo)

air temperature (ta) Temperature at 300 hPa (t)

air temperature (ta) Temperature at 500 hPa (t)

– Sea Surface Temperature (sst) (*)

* This variable can be omitted from the analysis if necessary, since it is not a standard
predictor for the TCs detection task.
** This variable (psl) can assume different nomenclature: air pressure at mean sea level,
air pressure at sea level, sea level pressure, sea level pressure.

OUTPUT DATA

The pre-processing procedure of the Feature Extraction consists of several steps to be performed
on CMCC-CM3 and CMIP6 data, that comes in NetCDF format:

● Identification of the same set of variables gathered from ERA5 (see Table 1 and 2)

● Spatial consistency preservation with respect to the training data

○ Interpolation of data to achieve the same spatial resolution (0.25° x 0.25°) of
training data (e.g. re-mapping operations by means of cdo)

○ The resulting interpolated map is made up of 721 x 1440 grid points (lat, lon). The
last latitude is dropped in order to facilitate the process of patch generation

● Generation of patches

○ The interpolated climatic maps are split into 18 x 36 non-overlapping patches of 40
x 40 grid points each that cover the whole input map. This makes the model able to

32

D 5.2 Design of the Pillar II use cases
Version 1.0

process each patch in an efficient way and to detect potential multiple TC
occurrences in a single time instant, on the same input map

COMPUTATIONAL REQUIREMENTS

● No particular computation requirements are needed

● Storage required:

○ CMCC-CM3: it depends on data stored on disk for the Use case 1 and on the output
data of the model simulation for the Use case 2

○ CMIP6: it depends on data stored on disk for the Use case 3 and on the number of
models involved in the comparison

4.3.2.4 Pre-processing for deterministic TC analysis

This stage includes the preparation of the NetCDF data for the deterministic TC analysis block.

Field listed in table 6 must be extracted from the CMCC-CM3 model output, or collected from ESGF
for the CMIP6 models. 6-hour variables, such as the one listed in table 6, must be concatenated
in time to be digested by the tracking deterministic algorithm.

In particular, an example of the header of CMIP6 NetCDF data for the CMCC-CM2-VHR4 model, air
temperature variable, is shown below. The file is a portion of the whole dataset limited to 1 month
of data (4 time steps per day). The full dataset consists of 780 of such files. As it can be seen the
main variable “air temperature” is a 4-dimensional matrix with time, pressure, latitude and
longitude.

dimensions:

 time = UNLIMITED ; // (124 currently)

 plev = 7 ;

 lat = 768 ;

 lon = 1152 ;

 bnds = 2 ;

variables:

 float ta(time, plev, lat, lon) ;

 ta:standard_name = "air_temperature" ;

 ta:long_name = "Air Temperature" ;

 ta:comment = "Air Temperature" ;

 ta:units = "K" ;

 ta:cell_methods = "area: mean time: point" ;

 ta:cell_measures = "area: areacella" ;

 ta:missing_value = 1.e+20f ;

 ta:_FillValue = 1.e+20f ;

33

D 5.2 Design of the Pillar II use cases
Version 1.0

INPUT DATA: CMCC-CM3 output data for use case 1 and 2, and CMIP6 datasets for use case 3.
Both in NetCDF data format. The necessary fields are the ones indicated in table 6.

OUTPUT DATA: The output consists in the position, in terms of Latitude and Longitude
geographical coordinates, of the TC center within each patch and the associated wind speed,
covering the global domain.

COMPUTATIONAL REQUIREMENTS: Large amount of main memory, also distributed, to enable
fast in-memory processing.

4.3.2.5 Pre-processing for extreme events data analytics

Concerning the data analytics block, the related pre-processing phase will perform a set of
operations in order to prepare the CMCC-CM3 or CMIP6 datasets for statistics and indices
computation; specifically, a set of indices will be taken into account in the analytics block (‘Feature
extraction phase’, ‘Extreme events analytics’ section) which require specific input data for the
proper and fast computation. Some examples are variable selection, domain subsetting,
file/variable concatenation, data structure transformation.

An offline phase will also be performed for extracting long-term (in a range of 30 years e.g., 1961-
1990) statistical values such as averages and percentiles for the indices computation and
comparison. This phase is not part of the running workflow.

INPUT DATA: CMCC-CM3 output data for use case 1 and 2, and CMIP6 datasets for use case 3.
Both in NetCDF data format. Temperature and precipitation variables will be mainly considered
for the extreme event analysis.

OUTPUT DATA: Multi-dimensional datasets ready for extreme events data analytics.

COMPUTATIONAL REQUIREMENTS: Large amount of main memory, also distributed, to enable
fast in-memory processing.

4.3.2.6 Machine Learning TC detection inference

The Feature Extraction is the Inference carried out within the workflow. It runs the analysis over
the pre-processed data. In this phase, the pre-trained Neural Network (Training phase) is exploited
to detect and localize TCs center, in terms of Latitude and Longitude geographical coordinates, on
CMCC-CM3 and CMIP6 data, as described by Use cases 1, 2 and 3 respectively.

INPUT DATA

● For Use cases 1 and 2, CMCC-CM3 data divided into non-overlapping patches of size 40 x
40 points each (re-mapped at the resolution of 0.25° x 0.25°) as described in the pre-
processing Section

● For use case 3, CMIP6 data divided into non-overlapping patches of size 40 x 40 points each
(re-mapped at the resolution of 0.25° x 0.25°) as described in the pre-processing Section

OUTPUT DATA

● For all the Use cases the output consists in the position, in terms of Latitude and Longitude
geographical coordinates, of the TC center within each patch. The output file will be
delivered in NetCDF and CSV formats

COMPUTATIONAL REQUIREMENTS

● The Feature Extraction requires 1 compute node equipped with 4 x GPU

34

D 5.2 Design of the Pillar II use cases
Version 1.0

4.3.2.7 Deterministic approach for TC detection

The TC occurrence method used is a tracking technique looking for individual TCs based on
objective criteria for the identification of specific atmospheric conditions based on [4]. In
particular, a two-step procedure is applied:

1) Potential storms are identified based on the three following criteria:

(i) For each 6-h time step, the grid points where the relative vorticity at 850 hPa exceeds the
threshold of 1.6 3 1024 s21 are identified.

(ii) If a local sea level pressure minimum is located within a distance of 28 latitude or longitude
from the vorticity maximum defined in the previous criterion, the relative grid point is considered
as the center of the storm. In addition, the local maximum of the 10-m wind speed within the 6-h
step is recorded.

(iii) The TC warm core is defined based on the temperature averaged between 300 and 500 hPa.
Only a warm-core temperature greater than 18C with respect to the surrounding mean
temperature (over a 68 latitude 3 68 longitude box) is considered as associated with aTC condition.
The distance of the warm-core center from the storm center must be within 2 degrees.

2) Storms are tracked as follows: for each potential storm condition, the algorithm verifies the
presence of storms during the following 6-h time period within a distance of 400 km. If no storm
is found, the trajectory is considered finished. If any storm is detected, the closest storm is chosen
as belonging to the same trajectory as the initial storm. To qualify a tracked trajectory as a storm,
it must last at least 3 days and have a maximum surface wind speed greater than 17ms-1 during
at least 3 days, without any constraint regarding their timing during the TC evolution. This tracking
algorithm has been validated as capable of realistically representing TC activity in previous studies
[5][6][7].

INPUT DATA: CMCC-CM3 model output or CMIP6, 6-hourly model output concatenated in time
after the selection of the needed fields (see Table 6).

OUTPUT DATA: The output consists in the position, in terms of Latitude and Longitude
geographical coordinates, and the associated wind, of the TC center at the 6h frequency, for all
the detected TCs . The output file will be delivered in NetCDF format.

COMPUTATIONAL REQUIREMENTS: There is no need for parallelization since the code is
sufficiently fast to be run on a single CPU. The main requirement is the storage for input data (order
of magnitude of ten GB for each year of simulation analysed).

4.3.2.8 Extreme events analytics

This stage will perform a set of statistical and mathematical operations to compute extreme events
indices starting from some examples from the ETCCDI Climate Change Indices lists1 (e.g., heat wave
duration/frequency/magnitude etc.). For example, heat waves can be defined as a period of three
consecutive days where the maximum temperature is above a reference daily threshold [8]. To
this end, different types of time-series oriented operations will be performed over multiple
variables. Long-term statistics will also be involved in the computation as reference/threshold
values for some of the metrics (e.g., long-term averages or long-term percentiles). This type of
analysis can benefit from parallel processing since the same computation can be applied
independently on each time series of the multi-dimensional data.

1 http://etccdi.pacificclimate.org/docs/ETCCDMIndicesComparison1.pdf

35

D 5.2 Design of the Pillar II use cases
Version 1.0

INPUT DATA: Multi-dimensional datasets with temperature and precipitation variables ready for
extreme events data analytics, as well as the long term statistical information from the pre-
processing stage.

OUTPUT DATA: NetCDF data and maps with the results of the analysis.

COMPUTATIONAL REQUIREMENTS: Large amount of main memory, also distributed, to enable big
data in-memory analytics.

4.3.2.9 Multimember/ Statistical Analysis

This block represents the last stage of the workflow that performs statistical analysis and validation
of the feature extraction results, as well as intercomparison of the results from different
approaches and models. It consists of two main sub-phases:

● Statistical analysis and validation: will perform some statistical analysis on the output of
the feature extraction for example to count the number of cyclones per basin or their
distribution according to the intensity. Moreover a comparison between the output of the
deterministic and the ML-approaches will also be considered as part of this block

● Multi-model analysis: will compare the results of the feature extraction block applied on
input datasets from different CMIP6 models (considering for example those from
HighResMIP) in order to perform an ensemble analysis.

INPUT DATA: NetCDF or textual data from the Feature Extraction stage.

OUTPUT DATA: NetCDF data and maps with the results of the analysis.

COMPUTATIONAL REQUIREMENTS: Large amount of main memory, also distributed, to enable big
data in-memory analytics.

4.3.3. Workflow building blocks description

The following table shows the different building (macro) blocks detailing the actions performed,
input and output and some implementation details for each of them; specifically it extends the
table already reported in D5.1, section 5.3, with additional information on the technological
aspects related to the specific tools/frameworks that we plan to exploit in the context of the
execution of the workflow.

Table 8 - Statistical analysis and feature extraction workflow building blocks

Building
Block

Name Included actions Input/Output data
structure

Implementations Details

1
CMCC-CM3

simulation run

Run of the CMCC-

CM3 climate model

Input: Initial condition,

radiative forcings

Output: Netcdf format files

(~1 TB for 1 year of

simulation)

Starting from the Initial Conditions and

radiative forcing, the simulation run

produces gridded data in netcdf format

about the main climate variables.

As described in section 3.2 YORC will

take care of the initial setup of the

workflow. PyCOMPSs has the task to

orchestrate the different tasks of the

workflow.

36

D 5.2 Design of the Pillar II use cases
Version 1.0

2
Pre-processing

phase

Concatenation of

timesteps, regridding

(if needed), variables

selection, etc.

Input: CMIP6 or CMCC-

CM3 datasets (NetCDF)

Outputs: NetCDF files

suitable for TC

detection/tracking or

Analytics blocks

Performs a set of preliminary steps to

organize/modify/regrid the data

accordingly for the following substeps.

PyCOMPSs scripts will be used to

manage this task while a combination of

dedicated tools for manipulating climate

datasets (cdo, nco) along with the

Ophidia Framework will be exploited.

3
Feature

Extraction

Potential storm

identification and

storms tracking,

computation of

different statistical

features (e.g. Nr of

TCs per basin,

distribution in the

different categories,

etc.).

Inputs: Multiple variables

from ERA5 data (3-hourly

data spanning from 1979

to 2020 -NetCDF format)

needed for ML NN training,

IBTrACS observations

(historical TC best track

data), NetCDF output of

the pre-processing phase.

Output: NetCDF,txt files,

maps with TC detection-

tracking and statistical

analysis results

Following a deterministic and data-

driven approach, extracts TC

detection/tracking datasets. In addition,

performs statistical features

computation on TC related datasets and

validation with respect to observations.

While PyCOMPSs will take care of the

management of the execution, the

deterministic approach of TC detection

will exploit the TSTORMS tool (see also

D5.1, section 5.3). The correspondent TC

detection based on a ML approach will

exploit the EDDL tool.

4

Multimember/

Statistical

Analysis

Percentile/threshold

based extreme events

indices computation

on

temperature/precipit

ation (e.g. heat

waves, …), multi-

model trend analysis,

multi-model

intercomparison, etc.

Input: Pre-processed

CMCC-CM3 dataset

(Netcdf format), statistical

analysis from Feature

Extraction (Netcdf format),

Observational best track

data

Output: Netcdf, txt files,

maps with

indices/analytics results

data

Performs a Multimember and statistical

analysis operations extracting

aggregated added values from the

climate simulation run or from the

Feature Extraction phase outputs. In

addition, performs validation with

respect to observations. PyCOMPSs

scripts will be used to manage this task.

If necessary, for simple computations

dedicated tools for manipulating climate

datasets (cdo, nco) will be exploited. In

addition, the Ophidia Framework will be

used for the most computational

demanding tasks.

5. Technologies & components involved
Starting from the requirement analysis performed in D5.1 (at the level of the pillar) and in D1.1 (at
the level of the project software stack) a preliminary mapping of the workflow building blocks with
respect to the eFlows4HPC software components is here proposed.

The main programming language that will be exploited for the implementation of these workflows
is Python, since it represents a very popular language and many of the solutions supported by the
project provide Python bindings.

Table 9 - Mapping of the technologies involved and the building blocks

eFlows4HPC software
component

Workflow block Comment

37

D 5.2 Design of the Pillar II use cases
Version 1.0

PyCOMPSs - COMPSs
runtime

General workflow (all the
building blocks)

The COMPSs runtime will be used to
orchestrate and execute the various
workflow building blocks though its
PyCOMPSs interface.

Ophidia HPDA
framework

Pre-processing stages,
extreme event analytics
and multi-
member/statistical
analysis

Ophidia will be the main solution used to
implement the pre-processing and data
analytics; in particular, the PyOphidia
interface will be used for coding the block.

EDDL
ML-based TC detection
training and inference

EDDL will be used for the implementation
of the Neural Network used for the ML-
based TC detection stage.

Hecuba

Between pre-processing
and analytics stages, also
for the
pruning/diagnostics

The use of Hecuba will also be explored to
manage intermediate results between the
different workflow building blocks

Yorc
initialization/deployment
/undeployment stages of
the ESM Workflow

YORC will be used for the high level part of
the workflow that is based on TOSCA

6. Conclusions
The design process of scientific applications is a very complex task that involves a lot of research
and assumptions on the underlying technologies that will be used as base technologies for the
implementation phase.

In this document we provide an overall overview of some key aspects that should be contemplated
during the development such as which technologies should be used for each part of the ESM
workflow and some diagrams to illustrate in a high level way how to exploit the novel eFlows4HPC
software stack in order to fulfil the defined requirements and use cases specified in the deliverable
D5.1.

This document will serve as a guide for the upcoming development phases.

38

D 5.2 Design of the Pillar II use cases
Version 1.0

7. Acronyms and Abbreviations

Term or abbreviation Description

AWICM3 AWI Climate Model Version 3 (OIFS and FESOM2 models)

CA Consortium Agreement

D Deliverable

DAG Data transformation pipeline

DLS Data logistics services

DoA Description of Action (Annex 1 of the Grant Agreement)

EB Executive Board

EC European Commision

GA General Assembly

HPC High Performance Computing

HPCWaaS HPC Workflow as a service

HPDA High Performance Data Analytics

IPR Intellectual Property Right

KPI Key Performance Indicator

M Month

ML Machine Learning

MS Milestones

PM Person month / Project manager

Pyfesom2 Python based tools to analyze FESOM2 model data

TC Tropical Cyclone

DOI Digital object identifier

UC Use case

WP Work Package

WPL Work Package Leader

YORC Ystia Orchestrator

8. References
[1] Kalman, R. E. (1960). "A new approach to linear filtering and prediction problems". Journal of
Basic Engineering. 82 (1): 35–45. doi:10.1115/1.3662552. S2CID 1242324.

[2] Real, R., & Vargas, J. M. (1996). The probabilistic basis of Jaccard's index of similarity. Systematic
biology, 45(3), 380-385. doi:10.1093/sysbio/45.3.380

[3] FESOM2 model grid geometry, https://fesom2.readthedocs.io/en/latest/geometry.html#the-
placement-of-variables

[4] Zhao,M., I.M.Held, S.-J. Lin, andG.A.Vecchi, 2009: Simulations of global hurricane climatology,
interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate,
22, 6653–6678, doi:10.1175/2009JCLI3049.1.

[5] Wehner, M., , Reed, K. A., Stone, D., Collins, W. D., & Bacmeister, J. (2015): Resolution
Dependence of Future Tropical Cyclone Projections of CAM5.1 in the U.S. CLIVAR Hurricane

https://doi.org/10.1115%2F1.3662552
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:1242324
http://dx.doi.org/10.1093/sysbio/45.3.380

39

D 5.2 Design of the Pillar II use cases
Version 1.0

Working Group Idealized Configurations, Journal of Climate, 28(10), 3905-3925. Retrieved Aug 10,
2021, from https://journals.ametsoc.org/view/journals/clim/28/10/jcli-d-14-00311.1.xml

[6] Bacmeister, J. T.,K. A. Reed, C. Hannay, P. Lawrence, S. Bates, J. E. Truesdale, N. Rosenbloom,
and M. Levy, 2016: Projected changes in tropical cyclone activity under future warming scenarios
using a high-resolution climate model. Climatic Change, doi:10.1007/s10584-016-1750-x

[7] E. Scoccimarro et al., Tropical cyclone interaction with the ocean: The role of high frequency
(sub-daily) coupled processes. J. Clim. 30, 145–162 (2017).

[8] Russo, S., Sillmann, J., Fischer, E., 2015. Top ten European heatwaves since 1950 and their
occurrence in the coming decades. Environ. Res. Lett. 10, 124003. doi: 10.1088/1748-
9326/10/12/124003

[9] Dirk Barbi, Nadine Wieters, Paul Gierz, Miguel Andres-Martinez, Deniz Ural, Fatemeh Chegini,
Sara Khosravi, and Luisa Cristini (June 2021). ESM-Tools version 5.0: a modular infrastructure for
stand-alone and coupled Earth system modelling (ESM) Geoscientific Model Development
14(6):4051-4067 doi:10.5194/gmd-14-4051-2021

https://www.researchgate.net/journal/Geoscientific-Model-Development-1991-9603
http://dx.doi.org/10.5194/gmd-14-4051-2021

40

D 5.2 Design of the Pillar II use cases
Version 1.0

Appendix A.

ESM-Tools
ESM-Tools is a set of software components designed to provide a common framework for handling
the most typical tasks to run an earth system model successfully such as downloading and
compiling the model components, running the model either coupled or standalone and performing
data diagnostics on the output data.

ESM model setup utils

Conventional workflow on an HPC using an ESM simulation involves: compiling the model(s) on
target architecture, linking with external, dependent libraries (optionally also compile), specifying
inputs (optionally build them) and experiment parameters in namelists, and submit the
experiment to a job scheduler for execution. To facilitate the use of an ESM in envisioned modular
and deployable workflow architecture of eFlows4HPC requires clear separation of tasks that are
configurable using a specification (eg., in YAML) that can be easily shared and used by other tools
of the workflow.

OpenIFS/FESOM2 is designed to be used with a helper software package, esm_tools [9].
Fortunately, goals of esm_tools are congruent with specified modular requirements of the
workflow described in the previous sections. The esm_tools, essentially a Python package, includes
specifications, in YAML, for supported models and HPC configurations to compile, configure and
perform standard experiments. These tasks are mostly achieved by the following packages, using
OpenIFS/FESOM2 as model:

● esm_master: handles fetching source code for independent components of our ESM
model, namely: OpenIFS (atmospheric model), FESOM2 (ocean model), and OASIS coupler,
and their compilation on the underlying HPC platform. It has additional options such as to
elegantly handle updates to source codes and versions.

● esm_runscripts: takes runtime specific configuration specified in YAML as input to execute
an ESM simulation. A typical ESM can have multiple namelists (for underlying models) that
often contain many variables. The input YAML is hierarchically composable based on an
elaborate default base configuration. In effect, this simplifies and reduces clutter in
specifying input; only variables changed from base config are required, defaults are
inferred automatically. This also means input specification can be hashed hierarchically,
thus promoting simple and reproducible experiment specification.

While ESM-Tools provide a useful starting point, we intend to contribute to its development to at
least accommodate the needs of this project. Desirable features include: use TOSCA specification
as machine specification instead of its non-standard specification, extend functionality to
accommodate inputs from a variety of data sources (eg., using APIs provided by data logistics
service) instead of currently used, hard coded file paths.

