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1. Executive Summary 
This document presents the work done in WP5 concerning the design aspects that should be 
considered during the implementation of the Pillar 2 relevant use cases, in the context of the 
eFlows4HPC project. These design decisions concern both the Dynamic ESM (Earth System Model) 
workflow, the HPDA (High Performance Data Analytics) workflow and Feature extraction 
functionalities which functional requirements were specified in the D5.1 deliverable. 

By design we mean the set of technological definitions that will guide the high level design of the 
software components that needs to be developed. The design is constrained to the architecture 
defined for the project described in D1.1 deliverable from WP1 that is briefly described in the first 
sections of this document for reference purposes.  

We divide the design process in two parts; in both cases we list the involved Pillar II use cases and 
then, for the ESM Dynamic workflow, we describe the workflow by providing a detailed activity 
diagram at the beginning based on the steps described in the D5.1 deliverable, followed by 
detailed descriptions and high level implementation details of each of the sub-workflows of the 
main one, with the idea of guiding the reader through the different design aspects of the ESM 
workflow steps. In a separate section we describe the design considerations of the Dynamic 
Analysis part of the ESM workflow where we set the scientific grounds and different aspects that 
need to be considered towards the development. For the HPDA and feature extraction use cases, 
the design process consists on describing the three main workflows that were specified in the D5.1 
deliverable, by providing detailed descriptions of these workflows, the involved building blocks 
and its implementation details and also information concerned the CMCC-CM3 datasets that will 
be used as an input. 

As the final step, we provide a mapping of the involved technologies and the software stack 
components. 

This document will serve as a reference during the development phase, as all technical work done 
in the project will be required to follow these guidelines.  

 

2. Introduction 
In this document we make a description of the overall high level design of the Pillar 2 Use Cases as 
a part of the eFlows4HPC project by providing the following information: 

- The involved use cases and its overall underlying design. With design we mean the set of 
technical decisions that will lead to the development of the components that will be 
integrated in the novel eFlows4HPC software stack, how these will interact with each other, 
and the scientific background behind these design ideas. 

- Information about integration with the eFlows4HPC software stack in a high level way, 
implementation details concerning the novel eFlows4HPC software stack will be provided 
as a form of insight for the upcoming development phase of the project with the idea to 
exploit the advantages of the software stack. 
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- Information about involved data structures. Climate models use several types of datasets, 
the idea is to provide an insight on these formats and the involved storage technologies 
provided by the novel eFlows4HPC software stack. 

 

2.1 Purpose and scope of the document 
This document only applies to the eFlows4HPC Pillar II use cases and requirements, and only 
includes those Use Cases identified for this working package. 

 

2.2 Reference documents 
 

Name of document Description 

D1.1 

Architecture document that describes the most important global 
technical decisions taken for the implementation of eFlows4HPC 
project, delivered by WP1 

D5.1 
Requirement document that describes a comprehensive list of 
requirements, for the Pillar 2 use cases, delivered by the WP5 

 

3. High level view of the architecture 
In this section we provide a brief overview of the most relevant architectural decisions taken for 
the eFlows4HPC software stack described in deliverable D1.1. These decisions will constraint and 
influence the design of the software components for the Pillar 2 use cases implementation. 

 

3.1 Overview 
Figure 1 provides a high level view of the eFlows4HPC software stack modules and most relevant 
components. 

From D1.1 document, a workflow implementation consists of four main parts: 

 A description about how the software components are deployed in the infrastructure 
(provided by an extended TOSCA definition). 

 A high level workflow implemented in Yorc (Ystia orchestrator) that executes the 
deployment and launches different components and also executes the DLS (Data Logistic 
Service) needed to move the data to be used in the simulation. 

 A low level workflow implemented in the PyCOMPSs programming model that will carry 
out the tasks related to the ESM simulation. 

 Data logistics pipelines to describe data movement and transformations to ensure the 
workflow data is available in the computing infrastructure when required. 

All the related workflow artefacts such as software components, datasets and the workflow 
definitions themselves will be stored in the software stack catalogues and registries (as displayed 
in Figure 2). 
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Figure 1 - eFlows4HPC Software Stack Overview 

 

 

 

Figure 2 - Diagram showing how the different software components of the Pillar II will be registered in the eFlows4HPC 
accessibility layer 
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3.2 Architecture of the Pillar use-cases 
In this section we describe the overall design of the software components that are going to be 
developed in the upcoming phases of the project. 

The workflow architecture that enables all the use cases of this WP can be broadly modularized 
and managed using two applications, a workflow manager and a task manager. Workflow manager 
is essentially YORC software and task manager is a Python application that heavily uses PyCOMPS 
to execute its component tasks.  

While the development of a workflow manager application and the choice of its components are 
explored in detail as part of WP1, we supply an envisioned summary of its role to provide a context 
to this document and give a perspective on interactions among components of the eFlows4HPC 
software stack.  

The workflow manager application coordinates and supervises a use-case workflow. The manager 
application, essentially YORC software, fetches a use case specific workflow description from a 
Workflow Registry. A workflow registry may contain many workflows for different use cases.  

Each workflow specification, apart from describing component-tasks, their initialization, and 
interactions, includes reference to a specification of underlying compute topologies that may be 
used for orchestrating the tasks of a workflow. For instance, ESM simulations might use CPUs, and 
its diagnostic components may use GPUs. TOSCA specification standard serves as a base-reference 
to compose such a workflow’s topology descriptions involving hybrid infrastructures. The 
specification has to be extended to accommodate additional ESM-specific needs of the project. 
Ystia orchestrator (YORC), an envisioned core component of the workflow manager application, 
uses the workflow specification to initialize necessary compute and storage resources, and 
orchestrate component tasks of a workflow. 

Use cases of this WP can be conveniently launched as a group of tasks by a workflow manager that 
are coordinated by a task manager application. For instance, in a dynamic ESM workflow, a task 
manager application coordinates a complex chain of tasks starting from fetching ESM model 
sources, compilation on target architecture specification, fetching necessary input datasets, 
generation of ensemble members, their simulation and associated diagnostics. Usage of resources 
is monitored and any released resources can either be used by task manager or workflow manager 
to launch new tasks. A task manager is essentially a Python application using PyCOMPSs to 
compose component tasks. 

Fetching input data, sharing data among tasks and publishing value added data of a workflow will 
be handled using data logistics services. 

 

4. Pillar II Use Cases design 
In this section we provide the most relevant design aspects in the form of different diagrams, 
tables and views in order to show the ideas behind these and other related technical details that 
we should contemplate towards  the development. 

As it was described in the deliverable D5.1, the main steps (some of them may be optional) in an 
order that is close to the chronological for the execution of an ESM workflow are as follows:  

● Preparation of model computational mesh 
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● Preparation of initial conditions 
● Preparation of forcing data 
● Model compilation 
● Preparation of model configuration 
● Model run 

○ Monitoring of the model run 
○ Dynamic data analysis 
○ Data output 

● Data post-processing 
● Data analysis 

○ Sanity checks/ standard diagnostics 
○ Scientific analysis of the data 
○ Feature extraction 

● Data archiving 
● Data distribution 

 

Figure 3 - High level idea of the Pillar II workflows and its three main parts 

 

From Figure 3, there are three main parts to consider: 

 The implementation of the ESM Workflow to run the concerned climate models within the 
software stack; 

 The implementation of the Dynamical data analysis that will lead to the member pruning 
and optimization of the resources using ML techniques; 

 The implementation of the HPDA and the Multi-member statistical analysis and feature 
extraction that takes the output of the workflow as an input. 

 

4.1 Scope of the Design 
The intended scope will be the most relevant technical aspects we should consider towards the 

development. These decisions need to be made in order to implement the mentioned use cases 
for Pillar 2 taking as a base the defined architecture of eFlows4HPC.  

The scope of the design will only cover the use cases mentioned in D5.1  
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4.2 ESM Dynamic workflow 
In this section we provide a summary of the involved use cases for the implementation of the 
Dynamic ESM Workflow, different diagrams and any other useful illustrations to display different 
aspects of the design. This includes the first two parts, the ESM workflow and the Dynamical Data 
Analysis (for the pruning of the members). 

The overarching use case of the ESM dynamic workflow component of this WP is to conduct a large 
number of ensembles simulations that are dynamically pruned, described succinctly in the 
proposal and D5.1. With this use case as a reference, we develop components of the ESM workflow 
architecture that are modular and extendable to new use cases.  

The target ESM model used for the proposed use cases are OpenIFS/FESOM2, hence this section 
mostly deals with this ESM.  

4.2.1 Summary of involved use cases 

The overarching ESM dynamic workflow use case can be broadly split into (sub) use cases, as 
mentioned in D5.1. They are re-articulated here to provide a context to the following  sections.    

 Use case 1 (UC1): This use case aims to develop interactions among main ESM workflow 
components using OpenIFS/FESOM2. Its primary purpose is to design a modular workflow 
architecture for involved component tasks, namely ESM model setup, ensemble 
generation, ensemble member simulation and ensemble member pruning.  

 Use case 2 (UC2): This use case aims to use complex ESM workflows enabled by UC1 to 
generate novel scientific applications. This will additionally involve AI based workflow 
components described in the section 4.2.3. 

4.2.2 Use case 1: ESM Dynamic Workflow 

The following sections we provide insights about the high level design of the ESM Dynamic 
workflow and provide some technical details concerning its implementation using the eFlows4HPC 
software stack. 

4.2.2.1 Introduction 

As it was described in section 3.2, a workflow in the software stack will consist mainly in two parts: 

● High level workflow that will be basically a YORC workflow (described in YAML) where we 
will orchestrate how the different modules will be deployed, started and undeployed.  

● Low level part implemented in PyCOMPSs for the execution of the simulation and exploit 
the parallelism in the underlying HPC platform. 

Taking as input the steps mentioned in section 4, we can define an activity diagram (described in 
Figure 4) to illustrate the flow control of the different involved steps; some of these steps will be 
involved in the high level part of the workflow and some others involved in the low level workflow. 
We will indicate these details in the next sections and, for such purpose, we split the activity 
diagram (Figure 4) in sub-diagrams where we provide a table with the building blocks we previously 
defined during the D5.1 deliverable enriched with the matching activities and its implementation 
details (based on what was mentioned in section 3.2). 

We can divide a ESM Workflow in three main parts:  

● The initialization  
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● The execution and monitoring 

● The Postprocessing of the generated data and its archiving and distribution 

To implement some of the activities mentioned in Figure 4, we will make use of additional tools 
(see Appendix A - ESM Tools). In the following sections we also describe some of these, and the 
way they will be integrated.  

 

Figure 4 - Activity diagram displaying the overall ESM Dynamic workflow 
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We will also explore the development of additional features to take advantage of the novel 
eFlows4HPC software stack that will contribute to the field of earth system modelling, such as 
strategies of generation of ensembles using non-conventional techniques (described in Section 
4.2.2.5) and improvements on the ESM data diagnostics by using data-diagnostic driven tasks and 
innovative storage solutions (described in Section 4.2.2.6). 

4.2.2.2 Workflow Initialization  

The following activity diagram (Figure 5) shows the initialization part of the workflow described in 
Figure 4 each of the defined activities in the diagram maps with one or more building blocks of the 
ESM workflow, specifically the ones concerned with the initialization. 

 

 
Figure 5 - Diagram corresponding to the initialization part of the ESM workflow prior execution. 

 

For the initialization part, most of the concerned activities will be carried out by the high level part 
of the ESM-Workflow, that is basically a Yorc orchestration (see sections 3.1 and 3.2), because 
most of these activities concern the fetch and deployment of software components and the 
datasets needed to run the model from the software stack repositories.  

For some of the tasks to be performed during the initialization, such as the compilation of all the 
model components on the target platform, we will make use of the esm-tools libraries (described 
in Appendix A - ESM-Tools) that we will adapt to fit the architecture of eFlows4HPC software stack. 

The building blocks concerning the initialization of the ESM-Workflow are displayed in the 
following table: 
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Table 1 - Involved building blocks from D5.1 requirement document for initialization 

Building 
Block 

Name Activity Included 
actions 

Input/Output data 
structure 

Implementation details 

1 

Deployment of 

ESM model 

configuration 

 

Setup 

configuration 

Creation 

and 

modificati

on of 

configurati

on files.  

Input: general 

configuration files. 

 

Output: configuration 

files adjusted for 

specific model 

simulation deployed 

to target location 

Once the user has defined the 

parameters and settings for the ESM 

ensemble to be run, these files need to 

be deployed, this will be achieved by 

executing an activity in Yorc that will 

transfer the configuration files to the 

target location. 

 

The location of these files may be 

initially at the local file system of the 

user or some other repository provided 

for such purpose. 

2 

Preparation of 

model 

computational 

grid (mesh) 

 

Acquire Mesh 

Data 

Discovery 

of data 

location.  

 

File copy, 

grid 

partitionin

g if 

needed. 

Input: mesh 

resolution, mesh type  

 

Output: mesh files, 

ASCII/netCDF, grid 

partitions. 

The meshes or grids are defined in the 

configuration files for the ESM 

experiment, for both the ocean and 

atmosphere components. 

 

These components will be retrieved and 

deployed defining a Data logistic    

pipeline managed by the DLS (described 

in Section 3.2), in case the mesh doesn't 

exist or the partitions need to be 

generated, it will be done through the 

proper logic in the previously 

mentioned pipeline. 

3 

Preparation of 

initial 

conditions 

 

Acquire initial 

conditions 

Data 

Discovery 

of data 

location.  

 

File copy, 

sometime

s pre-

processing 

to fit the 

grid.  

Input: Climatology or 

fields from other 

simulations  (ASCII, 

NetCDF) 

 

Outputs: Climatology 

or fields from other 

simulations  (ASCII, 

NetCDF) 

The initial conditions defined in the 

configuration for the ESM experiment 

will be retrieved and deployed through 

a DLS invocation. 

 

We will apply at this step some of the 

new perturbation strategies such as 

Randomly perturbed initial conditions 

(see Section 4.2.2.5) with the goal of 

generating proper ensembles; these 

strategies will be implemented as data 

transformation pipelines.  

 

In case that some preprocessing is 

needed to fit the specified grid, this will 

be done through the same data 

transformation pipeline described 

previously.  

4 

Preparation of 

forcing data 

 

Acquire Forcing 

Data 

Discovery 

of data 

location.  

 

File copy, 

sometime

s pre-

processing 

to fit the 

grid. 

Input: Forcing fields 

of different types 

(ASCII, NetCDF) 

 

Outputs: Forcing 

fields of different 

types (ASCII, NetCDF) 

fitted to the grid. 

 

If the ESM experiment specifies in its 

configuration files that a given forcing 

dataset should also be used , then these 

files will be retrieved and deployed 

through a DLS invocation, in case that 

some preprocessing is needed to fit the 

specified grid, this will be done through 

a data transformation pipeline within 

the same invocation. 

5 
ESM model 

compilation 
Compile model 

Compilatio

n of all 

Input: Model name, 

Model version,  
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 model 

componen

ts, linking 

libraries. 

 

Output: model 

executable. 

The model sources will be retrieved by 

the Ystia orchestrator (Yorc) by defining 

a TOSCA activity that will get the sources 

and all needed components from the 

software stack software catalog.  

 

Within the same activity will do the 

compilation and linking of all model 

sources by using an adapted version of 

the compilation tools currently 

presented in the esm-tools (see 

Appendix A ). 

 

Preconditions: All the datasets, model components are correctly configured in the software stack 
registries and repositories, the configuration for the experiment is already defined and validated 

Postconditions: All the needed data is in place and the model already compiled with the specified 
settings (ESM workflow ready to run) 

4.2.2.3 Workflow Execution & Monitoring 

In the previous section it was mentioned how the different model components and initialization 
data will be fetched and deployed prior the execution of the simulation, The following activity 
diagram (displayed in Figure 6) shows the execution and monitoring part of the workflow described 
in the Figure 4  

 

 
 

Figure 6 - Diagram corresponding to the execution part of the ESM workflow. 
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The execution part involves the low level part of the workflow, the task manager provided by the 
software stack  (PyCOMPSs/COMPSs - see Section 3.2) will be in charge to launch the different 
tasks to execute the simulation and exploit the parallelism in the underlying supercomputing 
platform. The monitoring part has sides in both, the high and low level workflows, monitoring 
mechanisms are provided by the software stack, at the high level by Yorc orchestrator and low 
level by PyCOMPSs. 

The results of the dynamic data analysis are accessed periodically during the execution, after a 
certain number of timesteps have been executed. Such analysis is executed in parallel along with 
the ensemble and its results stored in Hecuba (see section 4.2.3 for further details). 

For running the ESM model we will make use of the esm_runscripts (see Appendix A - ESM-Tools) 
that we will adapt to fit the underlying architecture and to exploit the new possibilities of the novel 
eFlows4HPC software stack. 

In Table 2 we show the activities defined in Figure 6 and the matching building blocks from D5.1 
with some more details concerning the implementation of these activities. 

 

Table 2 - Involved building blocks from D5.1 requirement document for execution & monitoring 

Building 
Block 

Name Activity Included 
actions 

Input/Output 
data structure 

Implementation details 

6 

ESM 

model 

execution 

Execute ESM 

single run or 

Ensemble 

Execution of 

the model on 

available 

resources (see 

also 5.2 and 5.3 

from D5.1). 

Input: grid, 

initial 

conditions, 

forcing 

(netCDF, ASCII) 

 

Output: model 

results Hecuba 

data snapshot, 

check points, 

monitoring 

results, logs 

Model execution will be implemented fully in 

PyCOMPSs, we can see PyCOMPSs as an 

additional layer for execution (see Section 3.2 

for further information), 

 

The esm_runscripts tools (see Appendix A.) 

will be used to run the simulation. These are 

Python scripts and will be integrated with 

PyCOMPSs. 

Check ESM 

member status 

Online data 

analysis (see 

5.2 from D5.1). 

Input: 

Experiment ID 

 

Output: array 

with the 

members to be 

discarded 

A PyCOMPSs script will be generated to check 

the state of the running ESM members in 

Hecuba, this will trigger the pruning and 

release of the resources. 

Data output  

to storage 

Online data 

analysis (see 

5.2 from D5.1). 

Input: raw 

model data 

 

Output: 

Hecuba data 

format 

Intermediate results will be stored in Hecuba. 

For such purposes I/O Routines of FESOM2 

will be adapted to save the raw model data 

to Hecuba as part of the implementation of 

the Data Diagnostics Utils ( see Section 

4.2.2.6 ). 

 

These changes will also be used to facilitate 

the dynamic analysis and the pruning process 

( see Section 4.2.3). 

 

During the post-processing phase, this data 

will be converted to NetCDF format or other 

convenient standard. 
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Execute 

Member 

pruning 

Online data 

analysis (see 

5.2 from D5.1). 

 

Input: array 

with the 

members to be 

discarded 

 

Output: N/A 

The pruning of the members will also be 

carried out fully in PyCOMPSs and also it will 

be implemented the removal of the data 

generated by the pruned members and the 

release of the used resources by these. 

Monitor ESM 

Ensemble run 

Monitoring of 

the results, and 

execution. 

 

Resubmission 

of jobs. 

Input: 

Experiment ID 

 

Output: Status 

information of 

the ongoing 

simulation 

Monitoring mechanisms both for the low and 

high level workflows will be provided by the 

software stack. 

 

Preconditions: All model components are deployed and correctly configured, the settings for the 
experiment were validated and all allocations have been made.  

Postconditions: Climate model simulation executes successfully and all the results are ready in the 
storage. 

4.2.2.4 Workflow Post-Processing & disposal 

In this section we describe the last part of the workflow (displayed in Figure 7) that concerns the 
post-processing of the generated data and disposal of the used resources by the simulation, at this 
stage, we already have the outputs of the simulation in the file system of the HPC (usually located 
in the scratch of the HPC) or in Hecuba, ready for use. 

 

 

 
Figure 7 - Diagram corresponding to the post-processing and data handling parts of the ESM workflow 
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For the post-processing part, most of the logic will be implemented in the low level part of the 
workflow (PyCOMPSs - see section 3.2 for further details); these scripts will make use of the Data 
Diagnostics utils (Described in Section 4.2.2.6). After the post-processing and sanitization of the 
data have took place, it can be either the entry point to other workflows for further scientific 
analysis such the HPDA and Feature extraction (described in section 4.3) or the data can be just 
archived and the used resources released (removal of scratch folders used by the simulations, 
uninstall of all model software components among other things). These tasks will be part of the 
high level workflow that will deal with data logistics services and the TOSCA activities concerning 
the undeployment and release of the used resources. 

In table 3 we show the activities defined in figure 7 and the matching building blocks from D5.1 (as 
it was done in the previous sections) with some more details concerning the implementation of 
these activities. 

The workflows concerning HPDA and Feature extraction are fully described in section 4.3 of this 
document. 

 

Table 3 - Involved building blocks from D5.1 requirement document for the post-processing 

Building 
Block 

Name Activity Included 
actions 

Input/Output data 
structure 

Implementation details 

1 

Initial 

data post-

processin

g 

Execute  

post-processing 

Conversion of 

data to 

different 

formats for 

further 

analysis.  

 

Deriving 

additional 

variables 

 

Adding 

metadata 

 

Data transfer 

to disc 

partition 

where they 

can be 

analysed. 

  

Initial 

archiving 

Input: model data 

snapshot in Hecuba 

format. 

 

Output: post processed 

data transferred to disc 

partition  where 

analysis can be 

performed (netCDF, 

zarr) 

The final result is the data fully 

prepared for further scientific 

analysis, the post-processing will 

be implemented in PyCOMPSs 

taking advantage of having the 

data stored in Hecuba, logic for 

performing data conversions (for 

example from Hecuba format to 

NetCDF), deriving additional 

variables and adding metadata in 

case is needed will be 

implemented as part of the Data 

Diagnostics utils development (See 

Section 4.2.2.5). 

 

Any transfer needed for moving 

the data to a different location 

before executing the post-

processing will also be handled by 

PyCOMPSs code. 

 

2 
Data 

analysis 

Conduct sanity 

checks of the 

data 

initial sanity 

check 

 

Running 

standard 

diagnostics 

 

Interactive/ex

ploratory DA 

 

Scientific 

analysis (e.g. 

Input: Post-processed 

data (netCDF, zarr) 

located in the local file 

system. 

 

Output: Results of data 

analysis as data files 

netCDF, ASCII or 

images. 

The sanity checks will be 

implemented the same way, in 

PyCOMPSs as part of the Data 

Diagnostics utils  (see Section 

4.2.2.5). 

 

This also can be the entry point 

(optionally) for the HPDA feature 

extraction workflow (see section 

4.3 for further information). 
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Feature 

extraction, 

see 5.3 from 

D5.1) 

3 
Data 

archiving 
Archive data 

Copy data to 

archive 

 

Record 

information 

on where data 

can be found 

and how they 

can be 

retrieved. 

Input: Post-processed 

data (netCDF, zarr) 

 

Output: Same data, but 

located in the target 

location where these 

should be stored. 

After all the data has been post-

processed and sanitized, these 

should be removed from the HPC 

file system and archive for later 

usage and further analysis. At this 

stage all computations were 

completed and the results can be 

transferred via data logistic 

services defined for such purpose 

(DLS) in  the high level workflow.  

 

After all the data is transferred, 

Yorc will execute the stop and 

undeployment of the used 

components and remove these 

from the HPC. the same of the 

scratch folders used in the 

simulations. 

 

Preconditions: at member level, all the computational steps of the simulation have been 
performed and the generated data by the simulation is already in the storage.  

Postconditions: data is post-processed and moved to the target location, and then the involved 
components are undeployed in the case is the last member of the ensemble being running 

4.2.2.5 Ensemble generation utils 

A commonly used approach to generate ensembles involves methods used in the research domain 
of data assimilation such as ensemble Kalman filter [1]. Here we wish to explore ensemble 
generation strategies that uniquely exploit the architecture of eFlow4HPC and also enable novel 
use cases.  

● Randomly perturbed initial conditions: This simple methodology involves applying random 
perturbations guided by anomalies from a climatology (renalysis/observations) to the input 
datasets of an ESM.  While this is not necessarily the best strategy to generate an ensemble 
it is easiest to implement and can be used as an initial test case to foster development and 
integration of workflow components.  

● Perturbed parameter based ensembles: Parametrizations used in ESM models represent 
unresolved processes usually involving parameters that are hard to constrain. Perturbing 
these parameters can be used to generate model ensembles having a desirable, clear 
association to the physical process. Such ensembles can be used to explore (non-linear) 
interactions among modelled physical processes and may additionally contribute to an ESM 
model development (eg., tuning). As such, understanding valid bounds of parameters is of 
high scientific relevance. Despite these benefits, any reasonable exploration of a state 
space of parameters of an ESM (several tens) often poses computational challenges. 
Envisioned workflow architecture of this WP may be used to address this challenge. For 
instance, starting with a set of parameter perturbations, ML methods may be used on 
model data to predict best directions to drive the subsequent set of ensembles. 
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● Grid configuration based ensembles: FESOM2, ocean model component of target ESM, 
OpenIFS/FESOM2 employs an unstructured grid. This allows novel ensemble generation 
strategies where each ensemble member might have enhanced resolution over different 
spatial regions while keeping the number of computational grids constant. This might allow 
effective exploration of parametrization’s scale interactions and teleconnections. 

4.2.2.6 Data diagnostics utils 

ESM data is often subject to mandatory post processing steps before any scientific use. This 
separation is mainly done to  improve computational efficiency of an ESM. For instance, in the case 
of the atmospheric component model, OpenIFS, used in our target model OpenIFS/FESOM2, it is 
preferable to save state variables (e.g, vorticity and divergence) in their native spectral space to 
reduce the number of, compute-intensive,  spectral to grid-space transformations during model 
computations. 

Such post processing steps and other ESM data driven pipelines (such as described in section 4.3 
and generation of value added products) can be composed as data-diagnostic tasks in an ESM 
workflow. A conventional and simple approach to enable such a ESM data driven pipeline is to 
save model output as a file in the filesystem and share it across the diagnostic tasks. But, this often 
limits the use of heterogeneous computational architectures envisioned in workflows of 
eFlows4HPC, as each task needs the underlying filesystem to be mounted. We intend to overcome 
such restrictions by exploring a novel strategy by directly ingesting the data from an ESM into a 
database that is exposed via a network-accessible API available across all the diagnostic tasks. A 
proof of concept based on Python, layered on Hecuba, will be developed to explore this aspect. 

There has been some initial work in this regard using the OpenIFS model, to ingest data directly in 
Hecuba. A similar implementation in the FESOM2 model needs to be explored before integrating 
the entire ESM and benchmarking the performance of this approach. 

In summary this data diagnostics component represents a broad framework that facilitates (any) 
ESM simulation data driven pipelines. Such ESM data driven pipelines are explored in Use case 2, 
described below. 

 

4.2.3 Use case 2: Dynamical Data Analysis 
In this section we describe the initial design and underlying scientific process of the Dynamical 
Data Analysis that will lead to the optimization of the ESM ensemble in terms of used resources. 
The functionalities concerned are the ensemble member data analysis and the pruning of the ESM 
members based on the previous analysis done on the intermediate data of the ensemble. 

4.2.3.1 Introduction 

Pruning an ensemble member involves composing a pipeline of data diagnostics tasks that lead to 
a binary metric that is used to make a decision on continuation of the simulation. The metric, at 
the least, involves determining the validity of the simulated climate state and an estimate of 
contribution of an ensemble member to (ensemble) prediction skill of the model. A key challenge 
is to determine the temporal-point of simulation (lead time) to make a decision to prune.  

Simplest metric to evaluate the validity of the climate state of an ESM is to compute the global 
mean, minimum and maximum for a variable such as surface air temperature (a reasonable proxy 
for evaluating a coupled ESM). This is especially relevant for perturbed parameter based 
ensembles where there are no guarantees to ensure a valid climate. Similarly, (temporal) signal to 



 

19 

 

D 5.2 Design of the Pillar II use cases 
Version 1.0 

noise ratio (ensemble standard deviation versus ensemble mean of a variable) may be used as an 
estimate to evaluate contribution of an ensemble member to the (ensemble) prediction skill.  

Hindcast experiments allow additional pruning strategies, such as using standard prediction skill 
scores (e.g, mean square error with respect to reanalysis). These can be used in synergy with 
perturbed parameter ensembles to determine valid parameter bounds that are of high scientific 
relevance.  

In the next sections we provide more insights about the implementation of the assessment and 
how this will be calibrated and optimized to achieve good results through scientific 
experimentation. 

4.2.3.2 Ensemble Member data analysis 

The analysis of the intermediate ensemble member data will be based on a separate process from 
the ESM workflow itself that will run in parallel, executing periodically while the simulation 
progresses. So both will be independent. The logic will be in low level workflow (PyCOMPSs - see 
section 3.2), and the data produced by the analysis will be consumed by the ESM Workflow in 
order to execute the pruning of those members that are not useful. In table 4 we can see the 
associated building blocks defined in D5.1 deliverable together with high level implementation 
details. 

 

Table 4 - Involved building blocks from D5.1 requirement document for the Dynamic analysis & pruning 

Building 
Block 

Name Included 
actions 

Input/Output data 
structure 

Implementation details 

1 

Initialization 

of the ESM 

Member 

Diagnostic 

component 

The diagnostic 

component 

prepares 

Hecuba 

database for 

the run 

Input: Ensemble 

configuration files, 

Initial values for the 

variables to be used 

(optionally) 

 

 

Output: N/A 

The creation of the Hecuba database instance for the 

simulation will be done at the beginning of the 

execution of the ensemble as a prior task before 

executing any simulation task. it will be implemented as 

a PyCOMPSs task. 

 

Config files will be loaded to retrieve useful information 

to determine some parameters needed for the 

initialization; these parameters are outlined below in 

this section. 

3 

The ESM 
member 
diagnostic 
component 
conducts 
the 
assessment 
on the data 
of the  
ensemble 
members 

Data is 

retrieved from 

Hecuba 

database to 

conduct the 

assessment  

Input: experiment id, 

intermediate model 

data in Hecuba 

format 

 

Output: a list of the 

members that should 

be discarded stored in 

Hecuba  

After a certain number of time steps of the simulation 

have been executed (initial threshold to start launching 

the assessments is reached), the analysis will be 

conducted periodically every n time steps, the 

definition of these parameters is outlined below this 

section. 

 

The logic itself will be implemented in PyCOMPSs in 

combination with Hecuba, where this information will 

be stored. 

 

Preconditions: Hecuba and PyCOMPSs runtime are up and running  

Postconditions: the database structure is initialized for the ESM ensemble to be run and is ready 
to be used. 

For the initialization part and for the dynamical analysis itself, it is necessary to contemplate the 
definition of the following variables in the configuration files: 
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● ESM_DA_STARTING_POINT: An initial starting point to conduct the analysis will be also 
needed. In D5.1 it was pointed out that conducting the assessment in a very early stage of 
the simulation may lead to inaccurate results. 

● ESM_DA_FREQ: The Dynamic data analysis (as it was mentioned in the table 4) will execute 
every n time steps. The determination of frequency by which this analysis will be executed 
(the number of time steps between each analysis conducted) will be determined 
experimentally. Setting it too small may lead to an unnecessary overhead and if it is too big 
the assessment results may be inaccurate and members that may produce useful data may 
be discarded when they should not. 

● ESM_DA_VARS: The list of model variables that will be used to conduct the assessment, 
these will be determined by climate scientists in principle, but we can take those that 
accumulate value over time as an initial approach, such as total precipitation (meters of 
water equivalent per day) also it is important to limit these to a little number since if we 
set a huge list it can be very resource consuming. 

● ESM_DA_THRESHOLD: The value that determines when to discard a given member based 
on the assessment done. This will also be subject to experimentation to find a proper value. 

These variables will be calibrated as a part of the scientific experimental process by running 
successive ESM simulations with and without the member pruning enabled and these will be 
compared in order to improve performance of the method.  

As it was mentioned in D5.1, the main goal of the assessment is to discard members that will not 
add anything to the whole ensemble simulation. This can be very useful in huge simulations to 
release used resources by these members so it can be re-distributed and re-assigned to other 
processes. There can be two situations concerning the members, either one is too similar to any 
of the other members (the trend is convergent), or its values are outliers (the trend is divergent - 
see Table 5 and Figure 8 as example).  

4.2.3.3 Similarity criteria 

Initially, the idea will be to use accumulated variables as it was pointed out in the previous section 
(those model variables that aggregate over the time during the length of the simulation), such as 
total precipitation or Surface Solar Radiation (SSR) for example. We need to define a similarity 
criteria in order decide when to mark an executing ESM member for disposal, in order to say how 
similar or different are two given members in one of its dimensions (a given variable) we can apply 
a similarity algorithm such as Jaccard similarity [2] or other similar method to calculate how these 
relate to each other. There are several algorithms for estimating the similarity of a vector of values 
and several options may be considered since these may impact the performance of the simulation 
as well so it may be needed to explore different alternatives to find an equilibrium of performance 
and effectiveness on removing non useful members. 

If after a certain number of timesteps, the assessment results on a member whose similarity 
coefficient compared to the others is bigger than the defined threshold, it will be marked for 
disposal. 

The initial assessment will be based, as mentioned before, on accumulated variables. But the idea 
is to create a more sophisticated mechanism to use other type of variables and also machine 
learning techniques to do a more optimal assessment, at this stage it is to early to describe a 
solution based on machine learning, but it will be envisioned on the upcoming development 
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phases of the project with the goal to exploit at maximum the capabilities provided by the different 
techniques and the functionalities provided by the eFlows4HPC software stack. 

 

Table 5 - sample values through the timesteps of a simulation for an accumulated variable with a divergent tendency 

Members 

Time Steps 

(days)       

1 10 20 30 40 50 60 

fc0        

Total 

precipitation (m 

of water 

equivalent per 

day) 10 22 34 37 39 41 45 

fc1        

Total 

precipitation (m 

of water 

equivalent per 

day) 9 30 44 45 67 80 101 

fc2        

Total 

precipitation (m 

of water 

equivalent per 

day) 11 21 30 32 37 46 48 

fc3        

Total 

precipitation (m 

of water 

equivalent per 

day) 12 23,4 27 36 40 48 50 

fc4        

Total 

precipitation (m 

of water 

equivalent per 

day) 14 25 28 32 42 43 45 
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Figure 8 - Divergent member example for a ESM simulation of 5 members per date to show divergence 

 

4.2.4 Data model 

FESOM2, the ocean model component of the target coupled ESM model, OpenIFS/FESOM2, uses 
an unstructured triangular grid configuration, unlike most contemporary ESM models. Its grid 
configuration, best shown in FESOM2 model documentation [3], differs for scalar and vector 
variables. As an example, data structure representing model output for a scalar variable is shown 
below as header of common data format (equivalently NetCDF). 

dimensions: 

    nelem = 243899 ; 

    three = 3 ; 

    nod2 = 126858 ; 

    nz = 48 ; 

    nz1 = 47 ; 

    time = 10 ; 

variables: 

    uint faces(nelem, three) ; 

    double lat(nod2) ; 

     lat:_FillValue = NaN ; 

     lat:long_name = "latitude" ; 

     lat:units = "degrees_north" ; 

    double lon(nod2) ; 

https://fesom2.readthedocs.io/en/latest/geometry.html#the-placement-of-variables
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     lon:_FillValue = NaN ; 

     lon:long_name = "longitude" ; 

     lon:units = "degrees_east" ; 

    double nz(nz) ; 

     nz:_FillValue = NaN ; 

    double nz1(nz1) ; 

     nz1:_FillValue = NaN ; 

    int64 time(time) ; 

     time:axis = "T" ; 

     time:long_name = "time" ; 

     time:standard_name = "time" ; 

     time:stored_direction = "increasing" ; 

     time:units = "days since 1948-12-30T23:15:00" ; 

     time:calendar = "proleptic_gregorian" ; 

    float temp(time, nod2, nz1) ; 

     temp:_FillValue = NaNf ; 

     temp:description = "temperature" ; 

     temp:long_name = "temperature" ; 

     temp:units = "C" ; 

     temp:coordinates = "lat lon" ; 

 

While such a grid structure provides novel opportunities (e.g, ensembles based on refining mesh 
over different regions described in Section 4.2.2.5), it poses additional challenges for computation 
of data diagnostics. This is because, the most commonly used post-processing tools, as yet, do not 
allow easy processing and visualization of data on an unstructured grid. 

Pyfesom2, a software package used to analyse FESOM2 model output, aims to address this 
challenge by providing an interface to commonly used tools (in Python) and by providing 
commonly used diagnostic and visualization methods on an FESOM’s unstructured grid. To allow 
envisioned data diagnostics of this WP, it is necessary to contribute to the software development 
of Pyfesom2.  

 

4.3 Statistical analysis and feature extraction 
This section describes the design of the statistical analysis and feature extraction part of the Pillar 
II workflow and the involved components and data structures. 

 

https://pyfesom2.readthedocs.io/en/latest/
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4.3.1 Summary of involved use cases 

The following sections describe the three main workflows supported by the feature extraction (TCs 
- Tropical Cyclones) use case of Pillar II. A more detailed description of the various building blocks, 
the interaction among the components and the structure of the involved data is provided in the 
next section. 

As already mentioned in section 3.2, the entire workflow deployment, initialization and 
management will be performed by the upper layer of the eFlows4HPC software stack managed by 
YORC and PyCOMPs; specifically YORC will take care of the deployment and initialization of the 
workflow while PyCOMPS of the orchestration and execution of the different subtasks. 

More in detail, the first use case represents the base scenario where the analysis of TCs tracks is 
applied on the output of a single model (in this case the CMCC-CM3 ESM), the second one 
represents a more integrated approach where the analysis of TCs tracks is performed jointly with 
the HPC model execution (again the CMCC-CM3 ESM), while the third use case focus on the multi-
model analysis of TCs tracks in the context of climate data from the CMIP6 experiment.  The 
Coupled Model Intercomparison Project phase 6 (CMIP6) experiment will deliver to the scientific 
community more than 20PBs of data from climate simulations, which means around 10 times more 
than the previous phase (CMIP5). The CMIP6 archive provides access to multiple variables with 
different time and spatial resolutions. In the context of the TC detection analysis, we are interested 
in the data with the highest resolution (6-hourly data at ¼ degree). 

Tropical cyclone detection and tracking can be done by following different tracking methods 
available in literature (i.e., deterministic approaches) and also by investigating new Machine 
Learning approaches, to verify the possibility to speed-up the detection process in the contest of 
a multi-model/multi-member analysis. The following use cases will take into account and compare 
different approaches with respect to metrics such as accuracy, performance, etc. 

4.3.1.1 Use case 1: CMCC-CM3 datasets 

 

Figure 9 - Use case 1 based on CMCC-CM3 datasets 

 

This first workflow consists of the execution of the feature extraction (Tropical Cyclone detection 
and tracking procedures and extreme events analysis) on the CMCC-CM3 datasets, already 
available on storage as input of the subsequent steps. The following phases are then executed: 
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●   Pre-processing: includes a set of preliminary steps to organize/modify/regrid the data 
accordingly for the following substeps; 

●   TC Detection and tracking: consists of different approaches (e.g., deterministic and 
data-driven) for TC detection and tracking. This block produces as output additional 
higher-level products that can complement the model output; 

●   Statistical analysis and validation: this step will perform a set of analysis on the output 
produced by TCs detection/tracking stage, as well as comparison with observational 
data in order to validate performance (in terms of accuracy) of the various approaches. 
The output of this step will consist of additional features extracted from the TCs 
detection/tracking phase. 

It is worth mentioning that the ML TC Detection/Tracking block consists of two different stages: a 
training phase executed offline (outside the workflow execution), where the model is fitted based 
on reanalysis data (e.g., ERA5), and an inference stage, which is part of the workflow and is 
executed on the pre-processed CMCC-CM3 data. 

The generality of the workflow structure could also allow an easy integration of additional analysis 
blocks for feature extraction from the model output data (third branch), for example concerning 
extreme events analysis. 

4.3.1.2 Use case 2: CMCC-CM3 runtime 

Figure 10 - Use case 2 based on CMCC-CM3 datasets produced at runtime 

 

The second workflow consists of a more integrated scenario where the analysis pipeline is 
executed on the data produced by the model at running time; the single blocks of the workflow 
are similar to those defined in use case 1. The pre-processing block in this case gathers the required 
input data during the model execution. The model simulation and the feature extraction phase run 
asynchronously in order to incrementally produce the feature extraction results along with the 
model data  
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4.3.1.3 Use case 3: CMIP6 datasets 

 

Figure 11 - Use case 3 based on CMIP6 datasets 

 

Similarly to the first use case, this workflow starts from the CMIP6 multi-model experiment data 
already available on the storage. The workflow consists of multiple independent branches 
executed on different models (e.g., HighResMip) and experiments (historical, future) from the 
CMIP6 dataset. 

The branches can be executed independently and concurrently. Each branch performs the same 
steps reported in use cases 1. 

A final additional step is then performed on the whole set of intermediate results produced from 
the various models in a multi-model (ensemble) analysis.  

 

4.3.2 Workflow building blocks description 

This section provides a detailed description of the various building blocks involved in the workflows 
presented in the previous section. 

In particular, the following blocks will be described in terms of characteristics, input data, output 
data and computational requirements:  

● CMCC-CM3 model run; 

● the different pre-processing phases (able to prepare the datasets for the subsequent 
analysis); 

● the Tropical Cyclones detection modules, based on a Machine Learning and on a 
deterministic approach; 

● the analytics modules, respectively the Extreme Events analysis and the multi-
member/statistical analysis phases. 

Specifically, concerning the Tropical Cyclones detection exploiting a ML approach, a preliminary 
training phase is needed in order to set up the proper Neural Network and the related 
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hyperparameters. This phase is not included into the workflow execution at run time and it is 
reported as a separated section (paragraph 4.3.2.1). 

4.3.2.1 Machine Learning TC detection training 

As previously mentioned, the pre-processing stage implements the operations to prepare the ESM 
data for the following steps. 

The ML-based TC analysis relies on two different phases that are Training and Feature Extraction 
(Inference). 

● Training phase: the TC detection model is implemented, trained and validated on historical 
TCs data (ERA5 and IBTrACS). 

● Feature Extraction (Inference phase): the final trained model is used, into the workflow, to 
detect TCs on the output of CMCC-CM3 and CMIP6 models. 

The training is decoupled from the workflow and represents a prerequisite, while the feature 
extraction (inference) phase is reported in the next subsections. 

The training phase aims at developing a Convolutional Neural Network (CNN) architecture that is 
able to learn to detect spatial-invariant TCs patterns from historical tracks exploiting the selected 
climatic fields (as specified in the pre-processing phase). This phase is totally decoupled from the 
workflow and performed only once. The design of the CNN is ongoing. 

Two sub-stages can be identified: preparation of the data and the Neural Network model training.  

Pre-processing for the training phase 

INPUT DATA 

● The IBTrACS (International Best Track Archive for Climate Stewardship) dataset provides 
best track metadata on historical worldwide TCs extreme events 

■ Spatial coverage: Global  

■ Temporal coverage: 1842 to present 

■ Selected geographical domain: 0–70 °N, 100–320 °E 

■ Selected temporal domain: 1979 to present 

■ Temporal resolution: a record every 3 hours 

■ Extracted fields: SID (Storm ID), NAME, ISO_TIME, BASIN, LAT, LON 

For each selected IBTrACS record, the following climatic maps have been downloaded (one 
map every 3-hours): 

○ ERA5 hourly data on single levels from 1979 to present 

■ Spatial coverage: Global 

■ Temporal coverage: 1979 to present 

■ Selected geographical domain: 0–70 °N, 100–320 °E 

■ Selected temporal domain: 1979 to present 

■ Horizontal resolution: 0.25° x 0.25° (~25 km x ~25 km) 

■ Temporal resolution: 1 hour  
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■ Extracted fields: 10m wind gust since previous post-processing, 
Instantaneous 10m wind gust, Mean Sea Level Pressure, Sea Surface 
Temperature 

Notes:  

➢ “10m wind gust since previous post-processing” climatic field provides, for 
each grid point, information about the 10m wind gust peak in the last hour. 
This field has been processed to extract the maximum 10m wind gust within 
the past 6 hours 

➢ There is a 1:1 correspondence between the downloaded ERA5 maps and 
each record of the IBTrACS dataset  

○ ERA5 hourly data on pressure levels from 1979 to present 

■ Spatial coverage: Global 

■ Temporal coverage: 1979 to present 

■ Selected geographical domain: 0–70 °N, 100–320 °E 

■ Selected temporal domain: 1979 to present 

■ Horizontal resolution: 0.25° x 0.25° (~25 km x ~25 km) 

■ Temporal resolution: 1 hour  

■ Extracted fields: (Relative) Vorticity at 850 hPa, Temperature at 300 hPa, 
Temperature at 500 hPa 

In the selected geographical domain, 2281 TCs have been identified from the IBTrACS dataset in 
the 1979–2020 period, for a total of 141375 IBTrACS records that correspond to 3-hours resolution 
tracks. Then, 66527 ERA5 climatic maps related to the aforementioned climatic variables have 
been gathered from the Copernicus CDS (Climate Data Store). As an example, a map of Mean Sea 
Level Pressure (14/9/2019 h. 18.00) has been gathered from the ERA5 dataset according to the 
information provided in IBTrACS. As shown in the map, the IBTrACS metadata evidenced the 
presence of two TCs in the considered domain that have been highlighted through dashed red 
boxes. 

 

Figure 12 - Map related to a TC detection (14/9/2019 h. 18.00) 
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OUTPUT DATA  

● A NetCDF file for each 3-hourly IBTrACS TC record that integrates the extracted climatic 
fields from “ERA5 hourly data on single levels from 1979 to present” and “ERA5 hourly data 
on pressure levels from 1979 to present” for the selected spatial domain 

● Additionally, for each TC occurrence in every NetCDF file, a total of 4 patches of size 40 x 
40 points each, are generated according to the following procedures: 

○ DYNAMIC PROCEDURE: for each TC, it crops from the climatic map one patch 
containing the TC nearly in its center and a second patch that does not contain the 
TC 

○ STATIC PROCEDURE: for each TC, it crops from the climatic map one patch 
containing the TC in a random position within it and a second patch that does not 
contain the TC 

Notes:  

➢ In order to retain the correspondence between the TC center Latitude/Longitude 
coordinates and its position within the patch, a georeferencing mapping process 
has been applied. Specifically, latitude and longitude coordinates have been 
discretized on the 0.25° x 0.25° ERA5 grid and then converted to the patches 
coordinates reference system (pixels) 

➢ These procedures act as data augmentation techniques that can be helpful in the 
training process of the NN for improving the accuracy and to avoid overfitting 

COMPUTATIONAL REQUIREMENTS 

● No particular computation requirements are needed 

● Storage required:  

○ ≥ 240 GB (ERA5 Maps, NetCDF format) 

○ ≥ 20 GB (ERA5 patches, NetCDF format) 

Training phase 

INPUT DATA: IBTrACS records of historical TCs tracks in terms of Latitude and Longitude 
geographical coordinates of the TC center (output variable/target variable) 

Patches of 40 x 40 points each, corresponding to the extracted ERA5 climatic fields (input 
variables/features) 

OUTPUT DATA: Trained model (model and weights saved in HDF or other formats to allow 
portability) 

COMPUTATIONAL REQUIREMENTS: 

Hardware requirements: The Training phase requires 1 compute node equipped with 4 x GPU. 

Software requirements: The Training procedure will be carried out using Python v3 based on the 
Keras API and relying on TensorFlow backend. Additionally, the use of the EDDL framework will 
also be investigated.  
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4.3.2.2 CMCC-CM3 simulation run  

CMCC-CM3 is the latest model version under development at CMCC, based on the previous version 
of the CMCC-CM2  coupled climate model [7,8], largely based on the Community Earth System 
Model (CESM) project (http://www.cesm.ucar.edu) operated at the National Centre for 
Atmospheric Research (NCAR) in the United States, and used to run CMIP6 simulations following 
both simulation scenarios and HighResMIP protocols. The important and strategic difference with 
the NCAR coupled model is the oceanic component, which is based on Nucleus for European 
Modelling of the Ocean (NEMO) model. In CMCC-CM3, the atmospheric component is the CAM6 
and the ocean component is NEMO 4.0.  The adopted spatial resolution is ¼ degree, corresponding 
to about 25 km grid spacing.  

INPUT DATA: netcdf data representative of the radiative forcing gas concentration are needed, 
together with initial conditions for the atmosphere, ocean and ice model components.  

OUTPUT DATA: model output is collected as monthly files. In the atmospheric component 
different files are created for each month, corresponding to different time frequency output (from 
6-hourly to daily and monthly), containing different multidimensional (latitude x longitude x 
vertical level x time) fields. For the ocean component the maximum time frequency saved is the 
daily one. 

COMPUTATIONAL REQUIREMENTS: about 1000 CPUs are required to run one model year in two 
day real time on CMCC Zeus supercomputer. Also about 165GB of model output is generated for 
each year of simulation. 

4.3.2.3 Pre-processing for Machine Learning (inference) TC detection  

This block of the workflows takes care of preparing the data for the Machine Learning-based model 
(inference phase) for Tropical Cyclone detection. 

INPUT DATA 

● CMCC-CM3 data (Use cases 1 and 2) 

Table 6 - Correspondence between CMCC-CM3 and ERA5 climatic fields 

CMCC-CM3 ERA5 

WSPDSRFMX 10m wind gust since previous post-
processing (fg10) (*) 

(**) Instantaneous 10m wind gust (i10fg) 

PSL Mean Sea Level Pressure (msl) 

(***) (Relative) Vorticity at 850 hPa (vo) 

T300 Temperature at 300 hPa (t) 

T500 Temperature at 500 hPa (t) 

TS Sea Surface Temperature (sst) (*) 

http://www.cesm.ucar.edu/
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* This variable can be omitted from the analysis if necessary, since it is not a standard 
predictor for the TCs detection task. 
** This field needs to be stored during CMCC-CM3 execution. 
*** Computed in post-processing. 

 

● CMIP6 data (Use case 3)  

Table 7 - Correspondence between CMIP6 and ERA5 climatic fields 

CMIP6 ERA5 

– 10m wind gust since previous post-
processing (fg10) (*) 

wind speed (sfcWind) Instantaneous 10m wind gust (i10fg) 

air pressure at mean sea level (psl)** Mean Sea Level Pressure (msl) 

atmosphere relative vorticity (rv850) (Relative) Vorticity at 850 hPa (vo) 

air temperature (ta) Temperature at 300 hPa (t) 

air temperature (ta) Temperature at 500 hPa (t) 

– Sea Surface Temperature (sst) (*) 

* This variable can be omitted from the analysis if necessary, since it is not a standard 
predictor for the TCs detection task. 
** This variable (psl) can assume different nomenclature: air pressure at mean sea level, 
air pressure at sea level, sea level pressure, sea level pressure. 

 

OUTPUT DATA 

The pre-processing procedure of the Feature Extraction consists of several steps to be performed 
on CMCC-CM3 and CMIP6 data, that comes in NetCDF format: 

● Identification of the same set of variables gathered from ERA5 (see Table 1 and 2) 

● Spatial consistency preservation with respect to the training data 

○ Interpolation of data to achieve the same spatial resolution (0.25° x 0.25°) of 
training data (e.g. re-mapping operations by means of cdo) 

○ The resulting interpolated map is made up of 721 x 1440 grid points (lat, lon). The 
last latitude is dropped in order to facilitate the process of patch generation 

● Generation of patches 

○ The interpolated climatic maps are split into 18 x 36 non-overlapping patches of 40 
x 40 grid points each that cover the whole input map. This makes the model able to 
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process each patch in an efficient way and to detect potential multiple TC 
occurrences in a single time instant, on the same input map 

COMPUTATIONAL REQUIREMENTS 

● No particular computation requirements are needed 

● Storage required: 

○ CMCC-CM3: it depends on data stored on disk for the Use case 1 and on the output 
data of the model simulation for the Use case 2   

○ CMIP6: it depends on data stored on disk for the Use case 3 and on the number of 
models involved in the comparison 

4.3.2.4 Pre-processing for deterministic TC analysis 

This stage includes the preparation of the NetCDF data for the deterministic TC analysis block. 

Field listed in table 6 must be extracted from the CMCC-CM3 model output, or collected from ESGF 
for the CMIP6 models.  6-hour variables, such as the one listed in table 6, must be concatenated 
in time to be digested by the tracking deterministic algorithm. 

In particular, an example of the header of CMIP6 NetCDF data for the CMCC-CM2-VHR4 model, air 
temperature variable, is shown below. The file is a portion of the whole dataset limited to 1 month 
of data (4 time steps per day). The full dataset consists of 780 of such files. As it can be seen the 
main variable “air temperature” is a 4-dimensional matrix with time, pressure, latitude and 
longitude. 

dimensions: 

    time = UNLIMITED ; // (124 currently) 

    plev = 7 ; 

    lat = 768 ; 

    lon = 1152 ; 

    bnds = 2 ; 

variables: 

    float ta(time, plev, lat, lon) ; 

     ta:standard_name = "air_temperature" ; 

     ta:long_name = "Air Temperature" ; 

     ta:comment = "Air Temperature" ; 

     ta:units = "K" ; 

     ta:cell_methods = "area: mean time: point" ; 

     ta:cell_measures = "area: areacella" ; 

     ta:missing_value = 1.e+20f ; 

     ta:_FillValue = 1.e+20f ; 
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INPUT DATA: CMCC-CM3 output data for use case 1 and 2, and CMIP6 datasets for use case 3. 
Both in NetCDF data format. The necessary fields are the ones indicated in table 6. 

OUTPUT DATA: The output consists in the position, in terms of Latitude and Longitude 
geographical coordinates, of the TC center within each patch and the associated wind speed, 
covering the global domain.  

COMPUTATIONAL REQUIREMENTS: Large amount of main memory, also distributed, to enable 
fast in-memory processing. 

4.3.2.5 Pre-processing for extreme events data analytics 

Concerning the data analytics block, the related pre-processing phase will perform a set of 
operations in order to prepare the CMCC-CM3 or CMIP6 datasets for statistics and indices 
computation; specifically, a set of indices will be taken into account in the analytics block (‘Feature 
extraction phase’, ‘Extreme events analytics’ section) which require specific input data for the 
proper and fast computation. Some examples are variable selection, domain subsetting, 
file/variable concatenation, data structure transformation.  

An offline phase will also be performed for extracting long-term (in a range of 30 years e.g., 1961-
1990) statistical values such as averages and percentiles for the indices computation and 
comparison. This phase is not part of the running workflow.  

INPUT DATA: CMCC-CM3 output data for use case 1 and 2, and CMIP6 datasets for use case 3. 
Both in NetCDF data format. Temperature and precipitation variables will be mainly considered 
for the extreme event analysis. 

OUTPUT DATA: Multi-dimensional datasets ready for extreme events data analytics. 

COMPUTATIONAL REQUIREMENTS: Large amount of main memory, also distributed, to enable 
fast in-memory processing. 

4.3.2.6 Machine Learning TC detection inference 

The Feature Extraction is the Inference carried out within the workflow. It runs the analysis over 
the pre-processed data. In this phase, the pre-trained Neural Network (Training phase) is exploited 
to detect and localize TCs center, in terms of Latitude and Longitude geographical coordinates, on 
CMCC-CM3 and CMIP6 data, as described by Use cases 1, 2 and 3 respectively.   

INPUT DATA 

● For Use cases 1 and 2, CMCC-CM3 data divided into non-overlapping patches of size 40 x 
40 points each (re-mapped at the resolution of 0.25° x 0.25°) as described in the pre-
processing Section 

● For use case 3, CMIP6 data divided into non-overlapping patches of size 40 x 40 points each 
(re-mapped at the resolution of 0.25° x 0.25°) as described in the pre-processing Section 

OUTPUT DATA 

● For all the Use cases the output consists in the position, in terms of Latitude and Longitude 
geographical coordinates, of the TC center within each patch. The output file will be 
delivered in NetCDF and CSV formats 

COMPUTATIONAL REQUIREMENTS 

● The Feature Extraction requires 1 compute node equipped with 4 x GPU 
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4.3.2.7 Deterministic approach for TC detection 

The TC occurrence method used is a tracking technique looking for individual TCs based on 
objective criteria for the identification of specific atmospheric conditions based on [4]. In 
particular, a two-step procedure is applied: 

1) Potential storms are identified based on the three following criteria: 

(i) For each 6-h time step, the grid points where the relative vorticity at 850 hPa exceeds the 
threshold of 1.6 3 1024 s21 are identified. 

(ii) If a local sea level pressure minimum is located within a distance of 28 latitude or longitude 
from the vorticity maximum defined in the previous criterion, the relative grid point is considered 
as the center of the storm. In addition, the local maximum of the 10-m wind speed within the 6-h 
step is recorded. 

(iii) The TC warm core is defined based on the temperature averaged between 300 and 500 hPa. 
Only a warm-core temperature greater than 18C with respect to the surrounding mean 
temperature (over a 68 latitude 3 68 longitude box) is considered as associated with aTC condition. 
The distance of the warm-core center from the storm center must be within 2 degrees. 

2) Storms are tracked as follows: for each potential storm condition, the algorithm verifies the 
presence of storms during the following 6-h time period within a distance of 400 km. If no storm 
is found, the trajectory is considered finished. If any storm is detected, the closest storm is chosen 
as belonging to the same trajectory as the initial storm. To qualify a tracked trajectory as a storm, 
it must last at least 3 days and have a maximum surface wind speed greater than 17ms-1 during 
at least 3 days, without any constraint regarding their timing during the TC evolution. This tracking 
algorithm has been validated as capable of realistically representing TC activity in previous studies 
[5][6][7]. 

INPUT DATA: CMCC-CM3 model output or CMIP6, 6-hourly model output concatenated in time 
after the selection of the needed fields (see Table 6). 

OUTPUT DATA: The output consists in the position, in terms of Latitude and Longitude 
geographical coordinates, and the associated wind, of the TC center at the 6h frequency, for all 
the detected TCs . The output file will be delivered in NetCDF format. 

COMPUTATIONAL REQUIREMENTS: There is no need for parallelization since the code is 
sufficiently fast to be run on a single CPU. The main requirement is the storage for input data (order 
of magnitude of ten GB for each year of simulation analysed).  

4.3.2.8 Extreme events analytics 

This stage will perform a set of statistical and mathematical operations to compute extreme events 
indices starting from some examples from the ETCCDI Climate Change Indices lists1 (e.g., heat wave 
duration/frequency/magnitude etc.). For example, heat waves can be defined as a period of three 
consecutive days where the maximum temperature is above a reference daily threshold [8]. To 
this end, different types of time-series oriented operations will be performed over multiple 
variables. Long-term statistics will also be involved in the computation as reference/threshold 
values for some of the metrics (e.g., long-term averages or long-term percentiles). This type of 
analysis can benefit from parallel processing since the same computation can be applied 
independently on each time series of the multi-dimensional data. 

                                                      
1 http://etccdi.pacificclimate.org/docs/ETCCDMIndicesComparison1.pdf 
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INPUT DATA: Multi-dimensional datasets with temperature and precipitation variables ready for 
extreme events data analytics, as well as the long term statistical information from the pre-
processing stage. 

OUTPUT DATA: NetCDF data and maps with the results of the analysis. 

COMPUTATIONAL REQUIREMENTS: Large amount of main memory, also distributed, to enable big 
data in-memory analytics. 

4.3.2.9 Multimember/ Statistical Analysis 

This block represents the last stage of the workflow that performs statistical analysis and validation 
of the feature extraction results, as well as intercomparison of the results from different 
approaches and models. It consists of two main sub-phases: 

● Statistical analysis and validation:  will perform some statistical analysis on the output of 
the feature extraction for example to count the number of cyclones per basin or their 
distribution according to the intensity. Moreover a comparison between the output of the 
deterministic and the ML-approaches will also be considered as part of this block 

● Multi-model analysis: will compare the results of the feature extraction block applied on 
input datasets from different CMIP6 models (considering for example those from 
HighResMIP) in order to perform an ensemble analysis. 

INPUT DATA: NetCDF or textual data from the Feature Extraction stage. 

OUTPUT DATA: NetCDF data and maps with the results of the analysis. 

COMPUTATIONAL REQUIREMENTS: Large amount of main memory, also distributed, to enable big 
data in-memory analytics. 

 

4.3.3. Workflow building blocks description 

The following table shows the different building (macro) blocks detailing the actions performed, 
input and output and some implementation details for each of them; specifically it extends the 
table already reported in D5.1, section 5.3, with additional information on the technological 
aspects related to the specific tools/frameworks that we plan to exploit in the context of the 
execution of the workflow.  

 

Table 8 - Statistical analysis and feature extraction workflow building blocks 

Building 
Block 

Name Included actions Input/Output data 
structure 

Implementations Details 

1 
CMCC-CM3 

simulation run 

Run of the CMCC-

CM3 climate model 

Input: Initial condition, 

radiative forcings 

 

Output: Netcdf format files 

( ~1 TB for 1 year of 

simulation) 

Starting from the Initial Conditions and 

radiative forcing, the simulation run 

produces gridded data in netcdf format 

about the main climate variables. 

As described in section 3.2 YORC will 

take care of the initial setup of the 

workflow. PyCOMPSs has the task to 

orchestrate the different tasks of the 

workflow. 
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2 
Pre-processing 

phase 

Concatenation of 

timesteps, regridding 

(if needed), variables 

selection, etc. 

Input: CMIP6 or CMCC-

CM3 datasets (NetCDF) 

  

Outputs: NetCDF files 

suitable for TC 

detection/tracking or 

Analytics blocks 

Performs a set of preliminary steps to 

organize/modify/regrid the data 

accordingly for the following substeps. 

PyCOMPSs scripts will be used to 

manage this task while a combination of 

dedicated tools for manipulating climate 

datasets (cdo, nco) along with the 

Ophidia Framework will be exploited. 

3 
Feature 

Extraction 

Potential storm 

identification and 

storms tracking, 

computation of 

different statistical 

features (e.g. Nr of 

TCs per basin, 

distribution in the 

different categories, 

etc.). 

Inputs: Multiple variables 

from ERA5 data (3-hourly 

data spanning from 1979 

to 2020 -NetCDF format) 

needed for ML NN training, 

IBTrACS observations 

(historical TC best track 

data), NetCDF output of 

the pre-processing phase. 

  

Output: NetCDF,txt files, 

maps with TC detection-

tracking and statistical 

analysis results 

Following a deterministic and data-

driven approach, extracts TC 

detection/tracking datasets. In addition, 

performs statistical features 

computation on TC related datasets and 

validation with respect to observations. 

While PyCOMPSs will take care of the 

management of the execution, the 

deterministic approach of TC detection 

will exploit the TSTORMS tool (see also 

D5.1, section 5.3). The correspondent TC 

detection based on a ML approach will 

exploit the EDDL tool. 

4 

Multimember/ 

Statistical 

Analysis 

Percentile/threshold 

based extreme events 

indices computation 

on 

temperature/precipit

ation (e.g. heat 

waves, …), multi-

model trend analysis, 

multi-model 

intercomparison, etc. 

Input: Pre-processed 

CMCC-CM3 dataset 

(Netcdf format), statistical 

analysis from Feature 

Extraction (Netcdf format), 

Observational best track 

data 

  

Output: Netcdf, txt files, 

maps with 

indices/analytics results 

data 

Performs a Multimember and statistical 

analysis operations extracting 

aggregated added values from the 

climate simulation run or from the 

Feature Extraction phase outputs. In 

addition, performs validation with 

respect to observations. PyCOMPSs 

scripts will be used to manage this task. 

If necessary, for simple computations 

dedicated tools for manipulating climate 

datasets (cdo, nco) will be exploited. In 

addition, the Ophidia Framework will be 

used for the most computational 

demanding tasks. 

 

5. Technologies & components involved 
Starting from the requirement analysis performed in D5.1 (at the level of the pillar) and in D1.1 (at 
the level of the project software stack) a preliminary mapping of the workflow building blocks with 
respect to the eFlows4HPC software components is here proposed.  

The main programming language that will be exploited for the implementation of these workflows 
is Python, since it represents a very popular language and many of the solutions supported by the 
project provide Python bindings. 

 

Table 9 - Mapping of the technologies involved and the building blocks 

eFlows4HPC software 
component 

Workflow block Comment 



 

37 

 

D 5.2 Design of the Pillar II use cases 
Version 1.0 

PyCOMPSs - COMPSs 
runtime 

General workflow (all the 
building blocks) 

The COMPSs runtime will be used to 
orchestrate and execute the various 
workflow building blocks though its 
PyCOMPSs interface. 

Ophidia HPDA 
framework 

Pre-processing stages, 
extreme event analytics 
and multi-
member/statistical 
analysis  

Ophidia will be the main solution used to 
implement the pre-processing and data 
analytics; in particular, the PyOphidia 
interface will be used for coding the block. 

EDDL 
ML-based TC detection 
training and inference 

EDDL will be used for the implementation 
of the Neural Network used for the ML-
based TC detection stage. 

Hecuba 

Between pre-processing 
and analytics stages, also 
for the 
pruning/diagnostics 

The use of Hecuba will also be explored to 
manage intermediate results between the 
different workflow building blocks 

Yorc 
initialization/deployment
/undeployment stages of 
the ESM Workflow 

YORC will be used for the high level part of 
the workflow that is based on TOSCA 

 

6. Conclusions 
The design process of scientific applications is a very complex task that involves a lot of research 
and assumptions on the underlying technologies that will be used as base technologies for the 
implementation phase. 

In this document we provide an overall overview of some key aspects that should be contemplated 
during the development such as which technologies should be used for each part of the ESM 
workflow and some diagrams to illustrate in a high level way how to exploit the novel eFlows4HPC 
software stack in order to fulfil the defined requirements and use cases specified in the deliverable 
D5.1. 

This document will serve as a guide for the upcoming development phases. 
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7. Acronyms and Abbreviations 
 

Term or abbreviation Description 

AWICM3 AWI Climate Model Version 3 (OIFS and FESOM2 models) 

CA Consortium Agreement 

D Deliverable 

DAG Data transformation pipeline 

DLS Data logistics services 

DoA Description of Action (Annex 1 of the Grant Agreement) 

EB Executive Board 

EC European Commision 

GA General Assembly 

HPC High Performance Computing 

HPCWaaS HPC Workflow as a service 

HPDA High Performance Data Analytics 

IPR Intellectual Property Right 

KPI Key Performance Indicator 

M Month 

ML Machine Learning 

MS Milestones 

PM Person month / Project manager 

Pyfesom2 Python based tools to analyze FESOM2 model data 

TC Tropical Cyclone 

DOI Digital object identifier 

UC Use case 

WP Work Package 

WPL Work Package Leader 

YORC Ystia Orchestrator 
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Appendix A. 
 

ESM-Tools 
ESM-Tools is a set of software components designed to provide a common framework for handling 
the most typical tasks to run an earth system model successfully such as downloading and 
compiling the model components, running the model either coupled or standalone and performing 
data diagnostics on the output data. 

 

ESM model setup utils 

Conventional workflow on an HPC using an ESM simulation involves: compiling the model(s) on 
target architecture, linking with external, dependent libraries (optionally also compile), specifying 
inputs (optionally build them) and experiment parameters in namelists, and submit the 
experiment to a job scheduler for execution. To facilitate the use of an ESM in envisioned modular 
and deployable workflow architecture of eFlows4HPC requires clear separation of tasks that are 
configurable using a specification (eg., in YAML) that can be easily shared and used by other tools 
of the workflow.  

OpenIFS/FESOM2 is designed to be used with a helper software package, esm_tools [9]. 
Fortunately, goals of esm_tools are congruent with specified modular requirements of the 
workflow described in the previous sections. The esm_tools, essentially a Python package, includes 
specifications, in YAML, for supported models and HPC configurations to compile, configure and 
perform standard experiments. These tasks are mostly achieved by the following packages, using 
OpenIFS/FESOM2 as model:   

● esm_master: handles fetching source code for independent components of our ESM 
model, namely: OpenIFS (atmospheric model), FESOM2 (ocean model), and OASIS coupler, 
and their compilation on the underlying HPC platform. It has additional options such as to 
elegantly handle updates to source codes and versions. 

● esm_runscripts: takes runtime specific configuration specified in YAML as input to execute 
an ESM simulation. A typical ESM can have multiple namelists (for underlying models) that 
often contain many variables. The input YAML is hierarchically composable based on an 
elaborate default base configuration. In effect, this simplifies and reduces clutter in 
specifying input; only variables changed from base config are required, defaults are 
inferred automatically. This also means input specification can be hashed hierarchically, 
thus promoting simple and reproducible experiment specification. 

While ESM-Tools provide a useful starting point, we intend to contribute to its development to at 
least accommodate the needs of this project. Desirable features include: use TOSCA specification 
as machine specification instead of its non-standard specification, extend functionality to 
accommodate inputs from a variety of data sources (eg., using APIs provided by data logistics 
service) instead of currently used, hard coded file paths.  


