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1. Executive Summary 
Current deliverable aims at describing the test cases that will be tackled during the project. A number 
of test cases were selected with the aim of identifying high-impact cases which are at the same time 
feasible but challenging from the computational point of view. The selected cases were also 
organized hierarchically in an order of increasing complexity. The focus is on the simulation of large 
air cooled electrical engines, for which the thermal behaviour becomes crucial. 

Although the efficiency of electrical engines has increased significantly over the years, intrinsic 
electrical losses imply that the thermal behaviour needs to be studied in detail to avoid potentially 
catastrophic overheating. In many cases, the engines are air cooled, with the rotor acting as a fan 
and pushing the air through multiple small-size gaps which go through the stator. Such cooling 
mechanism is optimal in stationary working conditions and minimizes construction difficulties. The 
downside is however that when the rotor is stopped, or moves slowly, the system’s cooling becomes 
insufficient, thus resulting in a tendency to overheat. Current deliverable aims at the development 
of a Reduced Order Model able to tackle both steady state and transient conditions while at the same 
time having a sufficiently reduced online cost to be used in operation. 

The deliverable begins with a detailed description of the application, continues with some details 
about the test cases to be considered and finishes with some details on the numerical techniques 
to be employed in solving the problem. 

 

2. Problem description &application background 
Electrical motors are the key component for all automation applications. They provide a good and 
efficient means for all kinds of motion generation. In our case we look at medium voltage motors 
which are extensively used for heavy-duty applications like compressors, mills, pumps, crushers 
shredders and many more. Due to these versatile application fields the motors are utilized all over 
the different industries like cement industry, mining, paper industry, metal and steel, chemical, oil 
and gas industry. The size of such motors is typically ~2.5m length, 1.8m height, with a total mass 
of ~7t. This gives a rated power of 2-8 MW (Figure 1)  

Depending on the application, the motor can be connected directly to the power line, or a 
converter can be used to control the rotation rate and torque accordingly. In the case of a direct 
line connection during the start and stop of the motor a large amount of additional heat is 
generated, as the rotation rate is not in sync with the supply power frequency. This in turn can 
lead to an overheating of the motor- especially to the coils - and cause permanent damage up to 
a total failure of the asset. The operation of the motor using an additional converter attenuates 
this situation at additional costs for the converter. Using a converter the rotation rate of the motor 
can be adjusted to the needs of the operation. As the cooling is directly linked to the rotation rate, 
a lower rotation rate goes in sync with lower cooling air flow. 

To get rid of the excess heat generated during the operation, a sophisticated cooling concept of 
the coils was developed. To realize a compact structural shape, the Siemens Simotics H-compact 
PLUS series motors are designed such that air is guided through slits in the rotor and stator such 
that it can take up the heat loss from the windings. In this configuration the motor itself works as 
a pump and drives the air flow due to centrifugal forces (Figure 2). 
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Figure 1. Simotics H compact PLUS motor with water cooler (heat exchanger) mounted on top. 

 

 
 

Figure 2. Schematic air flow through Simotics H-compact PLUS motor [Sie17] 

 



 
 

6 
 

D4.2 Design of the Pillar I use cases 
Version 1.0 

For a safe operation of the motor it is necessary that the temperature in the windings does not 
exceed a critical temperature, as the electrical insulation is damaged due to thermal degeneration. 
This limits the maximum possible mechanical load of the motor. Even if the motor has an efficiency 
of ~97%, electrical losses lead to substantial heating as the rated power of the motor 
with~2000kW gives a total heat load of ~60-80 kW, which is even significantly higher during start 
up and brake. The electrical losses occur within the motor not only in the copper windings, but 
also in the iron-parts and rotor cage due to induction. 

During operation and predominantly after an emergency shutdown, the motor needs to cool down 
before it can be started safely again. A fixed time interval is prescribed by the operation guideline, 
which guarantees safe operation. As during the standstill of the motor the air circulation is 
interrupted as well, the cool-down is a slow process, as it is mainly dominated by heat conduction. 
Since the motor can be operated under different conditions and for different amounts of time, the 
guidelines are conservative in order to cover the worst case scenario. 

For a more economic operation (less standstill and therefore less production downtime) it would 
be desirable to have a real-time prognosis tool that describes the current thermal state of the 
motor at all critical locations and calculates the lowest possible time-interval to the next restart. 

To achieve this goal the following steps are taken: 

1.) Build a full scale model of a segment of rotor and stator including conjugate heat transfer and 
heat sources 

2.) Extend the model of the sector to full rotor and stator including winding heads and external 
housing 

3.) Use Model Order Reduction techniques to derive a real-time capable model of the motor in 
operation. 

 

 
 

Figure 3. Rotor during balancing process 
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Figure 4. Fully assembled stator 

 

 
Figure 5. Mounting of stator in housing 
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2.1 Specification of motor model 
For the project the Sinamics H-compact PLUS motor 1RN4 506 was chosen. To give a deeper 
impression of the motor some pictures from the motor manufacturing process are given in Figure 
3, Figure 4, Figure 5 . The overall dimensions can be found in Figure 6. 

To set-up a realistic motor model the material parameters given in Table 1 have been proved to 
be realistic. The nominal heat losses at full load of the motor are given in Table 2. Without loss of 
generality the load values can be scaled linearly for reduced load. 

 

 

Figure 6. Dimensioning of Simotion motor used in this study 

 

 

 
 

Figure 7. Segment through rotor and stator to explain the position of key components 
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Table 1. Material properties 

Material Property Unit Value 

Copper Density kg/m³ 8933 

 Specific Heat J/kgK 385 

 Conductivity W/mK 401 

Iron sheets Density kg/m³ 5000 

 Specific Heat J/kgK 500 

 Conductivity axial W/mK 2 

 Conductivity radial W/mK 27 

Spacer Density kg/m³ 300 

 Specific Heat J/kgK 500 

 Conductivity W/mK 0.1 

Filler Density kg/m³ 500 

 Specific Heat J/kgK 2000 

 Conductivity W/mK 20 

Insulation 
copper rods 

Heat transfer W/m²K 500 

Interface filler/iron Heat transfer W/m²K 250 

 
 

Table 2. Heat sources (given for complete motor) at full load 

Location Heat loss Remark 

Rotor copper cage 25800 W Volumetric in copper rods 

Rotor pulsation & surface 
losses 

3300 W On surface between rotor 
& stator 

Stator windings 21000W Volumetric in windings 

Stator iron yoke 8000W Volumetric upper half of iron 
sheets 

Stator iron teeth 22000W Volumetric lower half of iron 
sheets(between windings) 

Stator pulsation & surface 
losses 

6300W On surface between rotor 
& stator 
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3. Description of Test Cases 

3.1 Simulation of steady state conditions using a partial domain 
+ periodicity conditions 

The first test case aims at tackling the modelling issues in the 3D simulation starting with the 
essential components: the rotor and the stator. For simplicity, a periodicity assumption of the 
configuration is made at this stage. This allows simulating only a sector of the 3D model as 
displayed in Figure 7. Parametric studies and sensitivity analysis are performed at this stage. 

Temperature distribution in the motor and flow behaviour are the key quantities to be analysed. 
Thermal contact conditions will be employed to simulate thin layers. 

 

3.2 Simulation of unsteady conditions (only one cycle) 
At this stage the full motor is modelled, including winding heads and external housing. Due to the 
complexity of the geometry and the different number of stator and rotor segments, strategies to 
simulate a reduced domain will be investigated. One possibility would be to simplify the housing 
and simulate a 60° segment. 

In order to provide reliable data for the construction of the ROM models, it is necessary to simulate 
different operating conditions. Here we want to represent the motor operating at its given 
rotational speed. 

An important simplification to be taken into account is that even for transient conditions, the 
timescale at which the overheating happens is long when compared to the timescale at which fluid 
develops. In the practice this implies that in all conditions the fluid can be frozen to a slowly varying 
time averaged flow, something that can be effectively employed to reduce the computational cost. 

 

3.3 Simulation of unsteady conditions (multiple start-stop 
cycles) 

At this point realistic operating conditions can be simulated. These consist of multiple start and 
stop cycles. The results of these simulations are the basis for the construction of the unsteady 
ROM. The definition of the profile to be simulated is based on the requirements coming from the 
ROM building and the need to cover all possible operating conditions of the motor. 

Since the timescale needed for the simulation of such phenomena may be of the order of hours, this 
would imply the simulation of many thousands of rotor rotations. This difficulty will be sidestepped 
by the use of “frozen fluid” assumptions. 

 

3.4 Full model reduction (both steady and unsteady) 
For the described geometry two types of reduced order models are generated: steady and 
unsteady. The use of the reduced steady state model is to be seen both in the design phase and 
at operation. During the design phase a parametric reduced order model is used to quickly assess 
the machine performance and behaviour under changing parameters like external air 
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temperature, applied load and rotational speed. The generated data is used to define the optimal 
operating range of the machine. At operation, a fast model can give a measure of the performance 
losses under extreme conditions and support the decision process as to whether to allow the 
operation or stop it. 

The unsteady reduced order model is intended to be used as a virtual sensor during the machine 
operation. The model must be able to run in parallel to the machine operation, take in measured 
data or estimated values as boundary conditions and predict the temperatures at critical positions. 
The value of the estimated temperature is used to estimate the moment at which the motor can 
safely be restarted after a shutdown to avoid overheating. In order to be used as a virtual sensor 
the reduced order model must be at least real-time capable, at best faster than real time to allow 
prediction into the future and planning of the operation. A maximal error in the estimation of the 
critical temperature with respect to the full order model of less than 10% is desirable. 

Beyond the unsteady case, a ROM model for steady state operation is also necessary. This model 
should have air temperature, applied load (distribution) and rotational speed as variable input 
parameters. All models should be based on unstructured meshes on the given (slightly simplified) 
geometry of the motor. 

The full geometry of the rotor and stator including the shaft is presented in Figure 8. 

 

 
 

Figure 8. Rotor, motor, and shaft complete. 

The number of nodes and elements needed to create a mesh for the whole model is very high, 
therefore, it is necessary to do some simplifications. The periodicity assumption allows us to 
simulate only a sector of the full rotor, stator, and shaft. 

Mesh will be simplified as much as possible employing MMG (and/or ParMMg capabilities) as 
needed. Mesh adaptivity will also be applied whenever possible to take advantage of the coupling 
of Kratos and of the MMG toolbox. 

To explain the geometrical properties of the rotor, Figure 9 and Figure 10 shows the different 
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components, where: 

 Green: Shaft made from steel. 

 Grey: Stack of thin iron sheets (anisotropic conductivity). 

 Red: Copper rods. 

 Blue: Thin sheet of insulator (Copper rods are surrounded to electrically isolate them). 

 Brown: Wood sticks and disk (Stacks of iron sheets are separated by wood sticks and there 
is a wooden disc on both ends of the rotor). 

 

 
 

Figure 9. Rotor and shaft. 

 

 

 
Figure 10. Rotor components. 
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Working with thin insulation layers (blue) leads to a very complex and fine mesh; this situation can 
be overcome by merging the insulation layers with the copper rods to become one body and 
applying an additional heat resistance between rod and iron. 

To create the first mesh, a single disk containing half of the iron-sheet stacks is taken from the 
original geometry. This is shown in Figure 11. 

 

 

 

Figure 11. Rotor, stator, and shaft disk. 

 

An extra simplification to this disk can be done by only taking a 30º slice (see Figure 12) which is 
expected to provide reliable data for the construction of the ROM model. 

 

 
Figure 12. Solid volume rotor, stator, and shaft slice 30º. 
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The next step is to create the mesh given the previous simplifications. To obtain a well-conditioned 
mesh, the volumes of the original CAD model were redefined using the pre- and post-processor 
software GiD. Leading to an initial mesh (not final mesh) shown in Figure 13 with 362613 
tetrahedral elements and 75805 nodes. 

 

 
Figure 13. Solid volume rotor, stator, and shaft slice 30º mesh. 

 

To recover the disk, the 30°slice can once be mirrored to give a 60° slice. Copying and rotating this 
60° slice 6 times results in a full 360° disc. In addition, this disk can be copied several times to get 
the full motor. 

Moreover, the mesh for the fluid comes from performing a negative mesh (Figure 14) of this 
simplified slice (Figure 12). 

 

 
Figure 14. Fluid volume of rotor, stator, and shaft slice 30º (fluid volume). 
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Figure 15. Fluid volume of rotor, stator, and shaft slice 30º mesh. 

 

This Leads to an initial mesh (not final mesh) shown in Figure 15 with 132960 tetrahedral elements 
and 31659 nodes. Similar to the solid, the original model of the rotor, stator and shaft fluid 
volumes can be recovered by copying the slice to recover the disk and copying the disk to recover 
the wanted longitudinal size. 

 

4. Intrusive approach (hyperreduction) 
The intrusive approach for constructing the fast reduced-order model is based on the 
offline/online “hyperreduction” method advocated in [He17] and [He20]. We provide in what 
follows a succinct description of the steps followed for arriving at such a model. 

 

4.1 Training stage 
The training stage consists in solving the coupled finite element equations governing the problem 
under consideration for representative “training” scenarios, namely: 

1. Conservation of mass and momentum equations (Navier-Stokes) for the fluid (air) 

    Rf (v, p, T f ; µ) = 0      (1) 

2. Conservation of energy for the fluid 

    Rt(v, T f , T s, Q; µ) = 0      (2) 

3. Heat conduction equation for the solid parts 

    Rs(T s, Q; µ) = 0      (3) 

where 
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• v, p, T f : Vector of nodal velocities, pressures and temperatures for the fluid (Nv, N p and 
N f entries each). 

• T s: Vector of nodal temperatures for the solid parts (Ns entries). 

• Q: Vector of heat fluxes at the interface solid-air. 

• µ: “Training” parameters, i.e., those input parameters of the problem that change from 
one training scenario to another. For simplicity of notation, the time t is included in this 
set. 

To address the coupling of the above described equations, it will be assumed that the variations 
of temperature in the air do not significantly affect its motion during the heat transfer process. In 
doing so, the dependence on the temperature field in equation 1 can be dropped, leading to the 
standard isothermal Navier-Stokes equations. Accordingly, the strategy to address the coupled 
problem will be to first solve such Navier-Stokes equations (using a monoblock, mixed velocity-
pressure formulation) under given boundary and initial conditions (encapsulated in the vector of 
parameters µ), and then attacking the conjugate heat transfer problem represented by Eqs. 2 and 
3, using the nodal velocities v obtained in the Navier-Stokes analysis as input data. 

As for the conjugate heat transfer problem, it will be treated in a staggered manner, using 
temperature and flux at the common boundaries as coupling variables. More specifically, the 
temperature of the solid at the common boundaries will be used as Dirichlet conditions for the 
balance energy equation for the fluid, whereas the reactive flux vector Q will play the role of 
Neumann condition in the heat conduction problem 3. 

 

4.2 Dimensionality reduction 
The outcome of the training phase described in the foregoing will be stored in 3 distinct matrices 
Su, Sf and Ss, containing the velocity/pressure, fluid temperature and solid temperature solutions 
(or “snapshots”) for each training scenario and time step, respectively, i.e.: 

  Su = [U (µ1), U (µ2), · · · U (µP )]      (4) 

  Sf = [T f (µ1), T f (µ2), · · · T f (µP )]      (5) 

  Ss = [T s(µ1), T s(µ2), · · · T s(µP )]      (6) 

Here, P is the total number of snapshots (which is equal to the number of training scenarios times 
the number of time steps of each scenario), whilst U = [vT , pT ]T. 

The goal in the dimensionality reduction stage is to find a low-dimensional parameterization of 
the above three matrices, that is, we seek mappings of the form U = Hu(qu), T s = Hs(qs) and T f = Hf 
(qf), where qu, qf and qs stand for the low-dimensional counterparts of the vectors of nodal fluid 
velocity/pressure, fluid temperature and solid temperature, respectively. For the reduced-order 
model to be considered effective, the dimensions of such vectors, denoted by nu, nf and ns , must 
be much smaller than its nodal counterparts, i.e.: 

nu << N p + N v,  nf << N f,   ns << N s     (7) 

and, furthermore, the mappings should be able to represent any column of such matrices up to 
an accuracy threshold ε . 

In the present project, we shall consider affine mappings of the form 
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U (µ) = Un + Φu(µ)qu(µ)       (8) 

T f (µ) = T fn + Φf (µ)qf (µ)   (9) 

T s(µ) = Ts
n + Φs(µ)qs(µ)   (10) 

where the subindex n indicates the value of the corresponding variable at the previous time 
step. 

If the basis matrices Φu, Φf and Φs are assumed independent of the training parameter µ, then 
such matrices are given as the left matrix of the truncated Singular Value Decomposition (SVD) of 
the corresponding snapshot matrix. For instance, for the velocity/pressure snapshot matrix, this 
decomposition reads 

  Su = ΦuΣuV uT + Eu        (11) 

where Σu and V u designate the matrices of singular values and right singular values, while Eu stands 
for the truncation term. This term meets the condition ǁEuǁ < ϵǁSuǁ; hence, the number of columns 
of Φu, and therefore, the number of reduced velocity/pressure coordinates, is controlled by the 
user-prescribed tolerance ε. 

The SVD, in its standard form, is quite demanding in terms of computational requirements. To 
alleviate this computational burden, in this project we shall use a method based on the recursive 
application of the partitioned approach advocated in [He17], in combination with the 
randomization scheme proposed in [Pe15]. 

If the number of reduced coordinates for each variable proves to be overly high, we shall explore 
the derivation of parameter-dependent basis matrices. At its simplest, if the parameters do not 
change during each training scenario, we shall apply the SVD to the snapshot matrices 
corresponding to each value of the training parameters, and then determine the basis matrix for 
any input value µ by interpolation. It should be noticed that, since the basis matrix are column-
wise orthogonal, i.e., ΦT Φ = I (this is a property of the SVD), then, to preserve this property in the 
interpolated basis matrix, the interpolation should be carried out in the manifold of orthogonal 
matrices of size N ×n, as proposed in [Am08]. 

A more general strategy, valid also for the case in which the input parameters change during the 
simulation, is to apply some unsupervised clusterization technique such as the k-means, and 
determine basis matrices for each cluster. At each time step, the algorithm has to discriminate 
which is the most accurate basis matrix for describing the current state of the system by, for 
instance (see [Am12]), comparing the distances of the converged state and the centroids of each 
cluster. An even more advanced approach employs “autoencoders” to the same end. 

 

4.3 Reduced-order model 
Substitution of the approximations 8, 9 and 10 in the governing equations 1, 2 and 3 leads to an 
overdetermined system of nonlinear equations in the reduced coordinates qu, qf and qs.  To arrive 
at a determined system of equations, we shall approximate the weighting functions in the original 
finite element method by the basis matrices used for the solutions (Galerkin projection). It can be 
readily shown that this amounts to multiplying the balance equations by the transpose of the basis 
matrix, i.e.: 

ΦuT Rf (qu; µ) = 0        (12) 

Φf T Rt(qu, qf , Q; µ) = 0       (13) 
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ΦsT Rs(qs, qf , Q; µ) = 0       (14) 

Galerkin projections are known to produce instabilities in advection-diffusion problems such as 
the energy equation 2 ([Do03]). Should this behaviour also be observed in its reduced-order 
counterpart 13, we would explore the possibility of applying a least-squares strategy (see [3]) 
rather than a Galerkin projection for this equation. 

 

4.4 Hyperreduced-order model 
The projected equations 12, 13, and 14 can be expanded in terms of its elemental contributions a 
follows 

 

 

Here, R•
e denotes the contribution to the residual nodal vector of the e-th element, Φ•

e stands 
for the rows of the basis matrix Φ• corresponding to the nodes of the e-th element; finally, Mf and 
Ms are the total number of interior/boundary elements of the fluid/solid meshes. These equations 
evidence that, although the number of equations to be solved at each time step and iteration has 
diminished from Np + Nv + Nf + Ns to nu + nf + ns, the complexity of the problem still depends on 
the total number of elements of both meshes. To culminate the complexity reduction process, it 
is necessary to evaluate the projected residual of each of these 3 balance equations in a more 
efficient manner —that does not scale with the complexity of the underlying meshes. 

In the present project, this additional reduction step —known as hyperreduction— will be carried 
out using a procedure based on the Empirical Cubature Method (ECM), proposed by [He10, He20]. 
The first step in this method is to solve the reduced-order equations for the same training 
parameters used for determining the basis matrices. At each step, the projected residual of each 
equation is stored in 3 matrices Au, Af, As (with as many columns as elements in the corresponding 
mesh) such that 

  Φ•T R• = A•1 = 0        (18) 

where 1 is a column matrix of ones. 

Once these matrices have been computed, the ECM seeks a reduced set of elements for the fluid 
and solid meshes (denoted by Ef and Es, respectively) such that 
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Notice that the above equations are formally identical to 15 to 17, the only differences being that 
the index e does not run over the whole set of elements (only over the reduced sets Ef and Es), 
and that the element contributions in each equation are multiplied by positive weights ωe

u, ωe
f 

and ωe
s, respectively. To determine such weights, as well as the reduced sets of weights, we 

shall proceed as follows: 

1. Apply the truncated SVD (using the previously described randomized- partitioning 
strategy) to Au (unassembled matrix of the Navier-Stokes residual). 

2. Construct a matrix Gu formed by the matrix of right-singular vectors arising from this SVD, 
and augmented with a row of ones (this is done to eliminate the inherent ill-posedness of 
the problem, for it admits the trivial solution ωu = 0 ). 

3. By using the ECM, find a sparse positive vector ωu such that 

   Gu1 = Guωu         (22) 

It is shown in [He17] that the number of nonzero entries calculated by the ECM is equal to 
the number of rows of Gu. The indexes corresponding to such nonzero entries is the 
desired reduced set of fluid mesh elements Ef 

4. Repeat the procedure for Af (the matrix corresponding to the energy balance residual), that 
is, construct a matrix Gf from the right-singular vectors of Af , and find a sparse vector ωf 
such that 

  Gf 1 = Gf ωf         (23) 

In the search of the reduced set, use as initial guess the already computed set Ef —so that 
the selected set Cf shares as many elements as possible with Ef . 

5. Lastly, repeat the procedure for As (the matrix corresponding to theresidual of the solid 
heat conduction problem), and solve the problem 

Gs1 = Gsωs         (24) 

(the indexes corresponding to the nonzero entries here are denoted by Es). To account for 
the coupling between solid and fluid, the initial set in the ECM algorithm should contain 
the elements of Ef and C f contained in the common fluid/solid boundary. 

The final set of elements to be tracked for the fluid mesh will be formed by the union of Ef and 
C f, as well as the boundary elements common to the fluid in Es. Likewise, the set of elements to 
be tracked for the solid mesh will be formed by Es along with the boundary elements of the 
reduced fluid mesh common to the solid boundary 
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5. Non Intrusive Approaches 
The construction of a reduced order model is based on two different stages. The first stage 
consists of the approximation of the solution manifold with a low dimensional subspace or 
manifold. The second stage retrieves the evolution of the system dynamics into this low-
dimensional manifold for any value of the input parameters. As described before, intrusive 
approaches recover the latent variables (reduced basis coefficients) by means of a Galerkin 
projection of the underlying full order discretization onto the low dimensional manifold. 

On the other hand, non-intrusive methods rely only on input-output quantities without the need 
to have access to the underlying full order model discretization and approximate the input-output 
function using different paradigms [Bru20]. Using the data collected in the snapshots matrices 
during the offline stage, non intrusive methods seek a low dimensional approximation of the 
function: 

U = FU (μ) 

where we report an example for the velocity field. The different methods differ in the way it is 
constructed the approximation of the solution manifold and the approach used to retrieve the 
evolution of the latent variables. We will test and develop both linear and non-linear approaches. 
Among the linear ones we mention the proper orthogonal decomposition with interpolation 
[Am08], proper orthogonal decomposition with neural networks [He18] or Gaussian process 
regression [Te20]. 

In these approaches the solution manifold is approximated by a linear subspace computed by 
POD. Neglecting the contribution of the mean part, the approximated solution is then expressed 
as in intrusive methods with: 

U (μ) = Φuqu(μ) , 

T f (μ) = Φf qf (μ) , 

T s(μ) = Φsqs(μ) . 

The data coming from the full order snapshots is then used to approximate the functions: 

qu(μ) ≈ fu(μ), 

qf (μ) ≈ ff (μ), 

qs(μ) ≈ fs(μ). 

Depending on the methodology this function can be reconstructed by interpolation or regression 
strategies. 

We will also test non-linear approximation techniques that use non-linear methods also to 
approximate the solution manifold using methods such as convolutional autoencoders. An 
autoencoder is a type of neural network which learns a nonlinear encoding and decoding of a high 
dimensional dataset in order to unveil a low dimensional representation (Figure 16).  

The autoencoder is then used to define a latent space of reduced dimension which is used for the 
reduced order model: 

U ≈ g(z ) 

where z is the latent variable of reduced dimension. The mapping between the latent variables 
and the parameter coefficient values μ is reconstructed using similar approaches as in the linear 
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case with interpolation, neural networks or gaussian progress regression techniques. 

 

 
Figure 16. Schematic view of an autoencoder 

 

Convolutional architectures are preferable in this case, since the dimensionality of the problem 
might be prohibitive and fully connected autoencoders will not be a viable approach. Therefore, 
we aim to investigate the coupling between linear reduction methods, such as the proper 
orthogonal decomposition, and non-linear compression techniques [Fre21]. In order to use 
convolutional autoencoders to compress the solution manifold, which consists of snapshots 
expressed on an unstructured mesh, a preprocessing step will be required. We aim to test the 
techniques developed in [Hea21] to the current use case. Both stationary and non-stationary cases 
will be considered, in case of non-stationary problems we will investigate the applicability of the 
dynamic mode decomposition [Sch10] and long short term memory neural networks to 
approximate the evolution of the system dynamics in time [Ha20]. The resulting reduced order 
models will be compared with intrusive approaches and full order models in terms of accuracy 
and computational cost. 
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6. Acronyms and Abbreviations 
- HPC – High Performance Computing 

- KPI – Key Performance Indicator 

- WP – Work Package 

- ML – Machine Learning 

- DA – Data Analytics 

- SVD – Singular Value Decomposition 

- ROM – Reduced Order Model 

- FOM – Full Order Model 
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