

eFlow4HPC project results

HiPEAC Conference 2023

Jorge Ejarque (BSC)

eflows4HPC

- Software tools stack that make it easier the management of complex workflows:
 - Combine different frameworks
 - HPC, AI + data analytics
 - Reactive and dynamic workflows
 - Automatic workflow steering
 - Full lifecycle management
 - Not just execution
 - Data logistics and Deployment
- HPC Workflows as a Service:
 - Mechanisms to make it easier the use and reuse of HPC by wider communities

- Architectural Optimizations:
 - Selected HPC Al Kernels Optimized for GPUs, FPGA, EPI
- Validation Pillar's
 - Workflows of users representing CoEs

Motivation

Current approach

eFlows4HPC approach

Software Stack overview

eFlows4HPC software stack and HPCWaaS

Gateway services

- Components deployed outside the computing infrastructure.
- Managing external interactions and workflow lifecycle

Runtime Components

 Deployed inside the computing infrastructure to manage the workflow execution

HPCWaaS Overview

Interfaces to integrate HPC/DA/ML

- Goal:
 - Reduce glue code
 - Focus on the functionality, not in the integration
 - Reusability
- **First phase:** software integration
- **Second phase:** data transformations

```
@data_tranformation(input_data, function)
@software(invocation description)
def data_analytics (input_data, result):
    pass

#Worflow

simulation(input_cfg, sim_out)
data_analytics(sim_out, analysis_result)
ml_training(analysis_result, ml_model)
```

Software Invocation description

- invocation as a PyCOMPSs task
- Reused in different workflows

"binary":"tar",

"constraints":{

"params":"zcvf {{out_tgz}}" {{working_dir}}},

"computing_units": \$SW_THREADS}

Containers and HPC

Standard container image creation

- Simplicity for deployment
 - Just pull or download the image
- Trade-Off performance/portability
 - Architecture Optimizations
- Accessing Hardware from Containers
 - MPI Fabric /GPUs
- Host-Container Version Compatibility

HPC Ready Containers

eFlows4HPC approach

- Methodology to allow the creation containers for specific HPC system
 - Leverage HPC and Multiplatform container builders
- It is tight to do by hand but let's automate!

HPC Ready Containers

HPC-Ready Containers

Native Installation

HPC ready Container

Generic Container

Native Installation

HPC ready Container

Generic Container

TOSCA Modelization

Topology of the different components involved in the Workflow lifecycle

TOSCA Modelization

Application deployment workflow (done once)

End-User workflow (multiple executions)

Conclusion

eFlows4HPC

- Software stack and HPCWaaS
 - manage complex workflows in the whole lifecycle
 - Enable reusability of workflows and their components
 - Facilitate the deployment through HPC-Ready containers
 - Facilitates the accessibility of HPC systems
 - Reduce workflow management efforts

Other eFlows4HPC Sessions at HiPEAC

- WAPCO: Moday 11:55 12:20: Toward Matrix Multiplication for Deep Learning Inference on the Xilinx Versal (Jie Lei, José Flich and Enrique S. Quintana-Ortí, UPV)
- AccML: Wednesday 11:30 12:10 Convolutional Neural Networks: One Matrix Product to Rule them All! (Enrique S. Quintana-Ortí, UPV)

Thank you

www.eFlows4HPC.eu

