

Next-generation HPC workflows for natural hazards

Overview of eflows4HPC Pillar "Urgent Computing" workflows

Marisol Monterrubio (BSC-CNS) and Louise Cordrie (INGV)

eFlows4HPC workshop – Barcelona, September 13th 2023

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

URGENT COMPUTING

Links the advantage on:

- COMPUTING CAPACITY
- OPTIMIZED SIMULATION CODES
- DATA AVAILABILITY
- HPDA, ML

1. The computation operates under a strict deadline after which the computational results may have little practical value.

2. The onset of the **events** that need the computation is mostly **unpredictable**.

3. The computation requires **significant** computational resource usage.

URGENT COMPUTING FOR NATURAL HAZARDS

Earthquakes and tsunamis are unpredictable and devastating events that can have catastrophic socioeconomic impacts.

Pillar III: Urgent computing for natural hazards Earthquakes and Tsunamis

Poznan Supercomputing and Networking Center

The development of UC workflows for earthquakes and tsunamis involves the deployments of advanced tools and developments of complex tasks to ultimately bring them to an operational level.

- Obtaining **high-resolution Earth models** (velocity models that define the properties of the subsurface).
- Rapidly constraining source parameters and accurately estimating the impact of parameter variations in the outcome of simulations, i.e. sensitivity to parameter uncertainties.
- Ensuring fast and reliable results with **urgent access to computational resources** and smart management of all workflow components.

Software Stack

Natural hazard workflows and components

- Workflows involved:
 - Tsunami: PTF
 - Earthquakes: UCIS4EQ, MLESmap

- Software Stack Components used:
 - DA and ML: Dislib, EDDL, Ophidia
 - HPC Kernels: Salvus, HySEA
 - HPC, DA & ML Compositions: PyCOMPSs

Software stack components	UCIS4EQ Workflow	MLESmap	PTF/FTRT Workflow
HPC Workflows	Ρ	PyCOMPSs	
ML / AI	dislib	dislib EDDL	EDDL
Data Analysis			Ophidia

Deployment with HPC Workflows as a Service (HPCWaaS)

HPCWaaS:

- TOSCA: description of the workflow
- Alien4Cloud: development interface

Catalog		🛔 steven 🕌
Search. PTF HPCWaaS deployment and execution Probabilistic Tsunar	ni Forecast run	a T
Applications & Catalog HPCNasS Areionment Topology Editor (0.1.0-SNAPSH07)		🛦 steven 🚽
		()
And Anonicate Control Printing Train Control and	O Selected node	
	PycoMPSJob C Type: PycoMPSJob o Properties	= 9
	a, e environment	0
	a, e) e submission_para	c
	a e application (2)	0
	a, a) (a) keep_environment	0 0
PyCOMPSJob	reature Node Attributes	(co) (co)
	▶ tosca_id	
	tosca_name	
	● state	
	- Dranatuisitar	
	ima transfer Node	S 0 mint
	environment ExecutionEnvironment	 0.00 (00)
	dependency Node • Relationships	% 0.00 (00)
	dependsCnAbstractErwir. Type DependsOn Target AbstractEnvronment	N

UCIS4EQ MLESmap

Urgent Computing Integrated Services for Earthquakes UCIS4EQ workflow

Urgent Computing for Seismic simulation

Resilience Workflow: to provide fast outcomes using a fully automatic workflow

3D-physics based seismic simulations:

- Full time-histories
- Uniform sampling in space
- Sensitive in different ways to uncertainties than current approaches

The high resolution of this approach can complement the information of the GMM.

minutes / hours

UCIS4EQ: Urgent Computing Integrated Services for Earthquakes

PyCOMPSs orchestration of microservices

- PyCOMPSs adapted to the micro-services design structure and integrated into UCIS4EQ.
- PyCOMPSs has been extended with the *@http decorator*. It allows developers to define a task that performs an HTTP request

HPC Workflow implemented in PyCOMPSs

PyCOMPSs workflows to orchestrate different HPC executions

Before:

 $\rightarrow\,$ every execution in the HPC system was performed in a separate service call with its corresponding overhead

 $\rightarrow~$ every system has its own job scheduler, the original UCIS4EQ workflow implements a set of adaptors to submit the job in the HPC schedulers of every machine

Now:

 $\rightarrow\,$ This Workflow is called from the microservices workflow which submits the HPC Workflow using the PyCOMPSs queuing scripts which already supports different schedulers that has the same execution interface

- *slipgen* which runs the slip generation using a singularity image
- salvus_prepare and salvus_post which executes the Salvus preprocessing and postprocessing as normal python tasks,
- and *salvus_run* which performs the simulation with Salvus defined as an MPI application

<pre>container(engine="SINGULARITY", image="\$SLIPGEN_IMAGE", options="-ebind {{workingdir}}:/workspace/pwd /workspace") vinary(binary="/opt/scripts/launcher.sh", args="-o rupturedt {{dt}} -v {{fk_file}} -s {{input_src}}" , working_dir="{{workingdir}}") :ask(input_src=FILE_IN, fk_file=FILE_IN, workingdir=DIRECTORY_INOUT) f slipgen(input_src, dt, fk_file, workingdir): pass</pre>
<pre>:ask(input_data=FILE_IN, rupture=DIRECTORY_IN, salvus_setup=FILE_IN, working_dir=DIRECTORY_INOUT) if salvus_prepare(input_data, rupture, salvus_setup, working_dir): rupture_file = rupture + "/scratch/outdata/rupture/rupture.srf" os.chdir(working_dir) pre_process(input_data, rupture_file, salvus_setup, working_dir)</pre>
<pre>upi(runner="mpirun", binary="\$SALVUS_BINARY", args="compute {{prepare_path}}/salvus_input_rupture.toml", processes="\$SALVUS_PROCESSES" , occsses_per_node= "\$SALVUS_PPN", working_dir="{{working_dir}}") ask(prepare_path=DIRECTORY_IN, working_dir= DIRECTORY_INOUT) if salvus_run(prepare_path, working_dir): pass</pre>
<pre>cask(UC_input = FILE_IN, salvus_setup= FILE_IN, grid_coordinates= DIRECTORY_IN, simu_folder=DIRECTORY_IN, output_path=DIRECTORY_INOUT) if salvus_post(UC_input, salvus_setup, grid_coordinates, simu_folder, output_path): process_outputs_grid(UC_input, salvus_setup, grid_coordinates, simu_folder, output_path=output_path)</pre>
name == "main":
slip_id, input_path, salvus_setup, slip_input_src, region_fkld, dt = parse_arguments() slipgen_dir, salvus_wrapper_dir, salvus_dir, salvus_post_dir = create_output_dirs()
slipgen(slip_input_src, dt, region_fkld, slipgen_dir) salvus_prepare(input_path, slipgen_dir, salvus_setup, salvus_wrapper_dir) salvus_run(salvus_wrapper_dir, salvus_dir) salvus_post(input_path, salvus_setup, salvus_wrapper_dir, salvus_dir, salvus_post_dir)

UCIS4EQ Inputs

Simulations are sensitive to model inputs

- Earth models (HPC or remote repository)

UCIS4EQ requires reliable Earth models for the forward modelling of ground motions.

The second generation Collaborative Seismic Earth Model (CSEM) – a multiscale global tomographic Earth model that incorporates a range of local-, regional- and global-scale updates – has been integrated into the UCIS4EQ workflow

UCIS4EQ Inputs

- Ensemble methodologies

Statistical based on historical events

Monterrubio-Velasco, M., et al. (2022). *Frontiers in Earth Science*, 339.

Probabilistic approach: SeisEnsMan

Stallone, A., et al., International Union of Geophysics and Geodesy General Assembly 2023

UCIS4EQ Inputs

- Receivers

Selecting the stations and the receivers on the simulation domain.

- Kinematic finite-fault

Rupture Model for rupture.srf Avg/Max Slip = 94/296

Generating the kinematic finite-fault history using the Graves-Pitarka rupture code

UCIS4EQ Front-end -- GUI

		_	_	about urgei	nt computing EQ sin	nulations											
		Alert	s	User Event	Syst	tem Monitor	Results										
	¢ Origin	• Source	Magnitude	C Latitude	• Longitude	Depth (m)	Time (UTC)	Elapsed Time (hours)									
UNEESE	Northern Peru [Land: Peru]	INGV	7.6	-4.43672	-76.7883	108594	28/11/2021, 10:52:13	1105.93									
riter of Excellance for Excelose in Solid Earth		SCEDC	7.5	-4.4898	-76.8461	112480	28/11/2021, 10:52:13	1105.93									
	Northern Peru	GEOFON	7.42	-4.426	-76.758	101900	28/11/2021, 10:52:13	1105.93									
FIOWS4HPC	110010310 [500]	1107	7.1														
e tubure Europe-C ecosystem										ι	JCIS4	EQ P	orta	l			
	+	Ann									nitor dashboard about urgent o	provides real-ti	ime informati imulations				
	Marken -								· · · · · ·								
		****							Alerts		User Event	Sy	stem Monite	or	Results	_	
	A ROMAN		3 21														
		Ph	23		h FF	SE	Status REJECTED	 Origin East Nusa Tenggara 	Site	Latitude -7.63	Longitude 122.23	♥ Min. Mw ₽ 7.1	Max. Mw =	Min. Depth 7.1	7.3	e # Alerts	Run 61e539ec739c12a603c903
		5 Bh	8.		ter of Dicellence for Dioscole	in Solid Earth	O REJECTED	Lautem		-7.58	127.57	7.27	7.3	7.27	7.3	4	61e539ec739c12a603c903
	State and a second	N.a	-				O REJECTED	Loreto	Datem Del Maranor	n -4.45	-76.8	7.42	7.6	7.42	7.6	4	61e539ec739c12a603c903
	A Participation		(SRo)			10.0	LAUNCHED	North Aegean	Nonos Samou	37.92	26.79	7	7	7	7	1	61e53a97739c12a603c903
			0	e e	FIOWS41	APC											
	A State of the second		12	inth	e future EuroHPC ecosyst	oem	(1000000000000000000000000000000000000		10.0/						38145N 8		
			123						43 %							Im.	
																1 2	202
			a le co				۵.	Service	🕈 Status 🗘	InitTim	e	•	EndTime		Sunda Variation	18	YN &
	and the second		11				E	ventDomains	SUCCESS	2022-01-17 09	:44:55	2022-0	1-17 09:44	:55	7	200	2 20 mars
								CMTInputs	SUCCESS	2022-01-17 09	1:44:55	2022-0	11-17 09:44	:55	1	4 . 3	J. Ci
							Con	Dutemesources	SUCCESS	2022-01-17 09	1:44:55	2022-0	1.17 89.45	:00	342	-Otr	
								SourceType	SUCCESS	2022-01-17 09	:45:06	2022-0	1-17 89:45	:06	38'15'N	Ar.	provide and a second
								SlipGenGP	SUCCESS	2022-01-17 09	:45:06	2022-0	1-17 09:46	:44		A.C.	
							InputP	arametersBuilder	SUCCESS	2022-01-17 09	:46:44	2022-0	1-17 09:46	:44			100
							Sa	lvusPrepare	SUCCESS	2022-01-17 09	:46:44	2022-0	1-17 09:49	:02	38'00'N		

UCIS4EQ -- Use cases

- Mediterranean Sea:
 - 2017 M6.6 Kos-Bodrum earthquake, 120 km x 100 km
 - 2020 M7.0 Samos-Izmir earthquake, 140 km x 110 km
- Iceland:
 - 2000 (June 17) M6.4 SISZ earthquake, 135 km x 85 km domain
 - 2000 (June 21) M6.5 SISZ earthquake, 135 km x 85 km domain
- México:
 - 2017 M7.1 Puebla earthquake, 200 km x 150 km

Mediterranean Sea

Mw 7.0 Samos-Izmir, 2020

- Off-shore the North coast of Samos Island in the eastern Aegean Sea
- 2020-10-30 11:51:27 (UTC)
- 118 fatalities, ~ 100 injuries, collapse of structures
- Local high-intensity effects, Tsunami run-up

Source: https://earthquake.usgs.gov/earthquakes/eventpage/us7000c7y0/shakemap/pga

Mw 7.0 Samos-Izmir, 2020

UCIS4EQ configuration

- 4,012,250 number of mesh elements
- Domain: 110km in longitude, 140km in latitude, and 35km in depth
- Up to 5 Hz
- 22 simulations in the ensemble
- 90 GPUs (Piz Daint) per WF execution

Use cases: Mw 7.0 Samos-Izmir, 2020

• **1h20m** wallclock per WF execution

PGV_horizontal_max (cm/s)

Arias_horizontal_max (cm/s)

Use cases: Mw 7.0 Samos-Izmir, 2020

eFlows4HPC

Use cases: 2000 doublet SISZ earthquakes

1. M_w 6.5, 17/06/2000

Lat: 63.98° Lon: -20.34° Depth: 6.3 km Focal mechanism: {strike:273 , dip:74, rake:-3}

2. M_w 6.4, 21/06/2000

Lat: 63.98 Lon: -20.70° Depth: 5.1 km Focal mechanism: : {strike:271 , dip:77, rake:-5}

Source: Shake map for the two June 2000 earthquakes in South Iceland in Bessason, B., Bjarnason, J. Ö., & Rupakhety, R. (2020)..

Mw 6.4, 21/06/2000

- 4,400,001 number of mesh elements
- Domain: 127km in longitude, 84km in latitude, and 25km in depth
- Up to 5 Hz

- 14 simulations
- 44m wallclock per execution of WF
- 90 GPUs (Piz Daint) per execution

Mw 6.4, 21/06/2000

eFlows4HPC

UCIS4EQ conclusions

- Successful end-to-end executions of the UCIS4EQ using PyCOMPSs workflow manager
- The results are encouraging, with synthetics reproducing the right orders of magnitude observed in the recorded data.
- When well-calibrated, our results could complement or replace GMPEs for rapid hazard assessment.

Machine Learning based Estimator for ground Shaking maps MLESmap workflow prototype

Machine Learning based Estimator for ground Shaking maps (MLESmap)

Developing a novel methodology based on **analogous ML models** trained by a **large data set of physics-based** seismic simulations to fast-generate intensity maps in a given region **few seconds after an earthquake occurs**.

ML Methodology

Physics-based dataset

Los Angeles basin, Southern California (EEUU)

eFlows4HPC

Recording stations (sites)

Fault systems

• CyberShake 15_4

- 253 Sites
- 225 Sources (faults or faults segments)
- 2.857.860 observations (seismic scenarios) per site
- Total of 721.687.578 events

MLESmap on synthetic unseen example

Test results on synthetic EQ

Synthetic EQ of magnitude 8.05

MLESmap workflow

MLESmap models integrated into UCIS4EQ

eFlows4HPC

MLESmap workflow offline phase

MLESmap workflow offline phase

CyberShake WORKFLOW

CyberShake generates the database from physics-based seismic scenarios. The number of synthetic seismograms depend on the number of stations and the number of faults to be simulated.

Computer resources per each station

Stages	CPU's	Node	Tasks	Runtime
Pre-SGT	48	1	1	1 min
pre-AWP	48	1	1	15 s
AWP_X	576	12	576	20 min
AWP_Y	576	12	576	20 min
post - X	48	1	1	10 min
post-Y	48	1	1	10 min
run_DS	576	12	288	5 min

MLESmap -- Study area

- Iceland is the most seismically active region in northern Europe, due to its location on the Mid-Atlantic Ridge, which along with the Icelandic hot spot, is responsible for the tectonics and its active seismicity and volcanism
- The largest earthquakes in Iceland occur within the two transform fault zones in the country, the South Iceland Seismic Zone (SISZ) and Reykjanes Peninsula Oblique Rift (RPOR)
- The SISZ is characterized by the bookshelf faulting model containing seismogenic strike-slip N-S striking faults

Southwest Iceland bookshelf transform zone

MLESmap data generation

CyberShake generates the database from physics-based seismic scenarios. The number of synthetic seismograms depend on the number of stations and the number of faults to be simulated.

Location map of the synthetic seismic stations and the location of the faults 593 Synthetic Stations and 16633 events

Computer resources per each station

Stages	CPU's	Node	Tasks	Runtime
Pre-SGT	48	1	1	1 min
pre-AWP	48	1	1	15 s
AWP_X	576	12	576	20 min
AWP_Y	576	12	576	20 min
post - X	48	1	1	10 min
post - Y	48	1	1	10 min
run_DS	576	12	288	5 min

Preliminary results on SISZ region

Hyperparameters RF dislib

1.0

Results on validation set

MLESmap conclusions

 MLESmap: towards the combination of physics-based data and ML engine to fast estimate the ground shaking intensity using EQ information available shortly after the event

Tsunami workflow PTF (Probabilistic Tsunami Forecast)

Content

- introduction and motivation
- workflow description: technical and
 - scientific improvements
 - further developments

eFlows4HPC

Introduction of the PTF workflow

First end-to-end version of PTF orchestrated with PyCOMPSs

PyCOMPSs workflow

PyCOMPSs workflow: Step1, ensemble manager

eFlows4HPC

PyCOMPSs workflow: Step1, ensemble manager

PyCOMPSs workflow: Step2, HySea simulations

Integration of HySEA in the workflow and mpi-mc parallelisation

PyCompss calls the HySEA binary task in several nodes in parallel. Each task runs a single job to the queue system that implicitly carries out the parallel execution of a predefined number of simulations dividing into internal jobs, and allowing the traceability of each processes involved to be observed.

PyCOMPSs workflow: Step2, HySea simulations

Post-Processing in 2 steps with python scripts or using Ophidia

• STEP3 is implemented with **2 python scripts**, one running after each simulation, and one running when all simulations are completed. The use of the **Ophidia** framework avoid generating required continuous I/O operations from disk to save and then retrieve the outputs for the final merging phase.

This figure shows the PyCOMPSs tasks graph generated at the end of the workflow.

Use of new incoming information to update the scenarios' probabilities

- After the post-processing step and before the aggregation step, two tasks can be optionally (listener/parameter?) activated and allow a re-weighting of the probabilities based on information on the earthquake or the tsunami
- One task takes into input data on the earthquake focal-mechanism and the second one takes into input the tsunami observations (tide-gage records)

Turkey 2023 - East Meditteranean region 101 Tide-gage records Reference Mersin 100 Focal mechanism Beirut Cyprus Tsunami data Kos Bodrum Athen Alexandrie Mikonos SantorinHeraklion 10^{-1} Tripoli Thessaloniki 10-2 an (m) Istanbu ₩ 10⁻³ 10^{-4} 10-5 p85 mean p15. 10-6 . 100 200 300 400 500 600 POIs 0.8 Istanbul 0.6 0.4 0.2 -_____ 10-4 10-3 10-2 10-1 10-5 Tsunami intensity (m)

Use of new incoming information to update the scenarios' probabilities

Beirut's POI Hazard Curve

Map of all locations of the tide-Gage records, main cities and POIs used for the HC plot

PyCOMPSs workflow: Step3, intermediate evaluation of the PTF

PyCOMPSs workflow: Step3, intermediate evaluation of the PTF

PyCOMPSs workflow: Step3, intermediate evaluation of the PTF

STEP 4 – Aggregation, calculation of the hazard curves

Intermediate PTF results delivery

- A PyCompss commutative shared file allows the calculation of the intermediate/partial PTF hazard curves based on the available completed simulations and based on a predefined number N (every 100 scenario for example)
- Monitoring of the results: the failed simulations and the convergence of the results are monitored through the creation of different files.

Conv_bou_10_	Conv_bou_20_	Conv_bou_30_	Conv.bou_40_	Conv.bou_50_	Conv.bou_60_	Convibution	Conv.bou_80	Conv_bou_90_	conv_file.txt Nb Mean Var 1 10 0.019685 0.063072 2 20 0.016520 0.52025 3 0 0.017070 0.058088 4 0 0.016902 0.054563
Conv_bou_100_ scenarios.png	scenarios.png	conv_bou_120_ scenarios.png	conv_bou_130_ scenarios.png	conv_bou_140_ scenarios.png	conv_bou_150_ scenarios.png	conv_bou_160_ scenarios.png	conv_bou_170_ scenarios.png	scenarios.png	550 0.016640 0.05382 660 0.017121 0.05438 770 0.017426 0.05438 90 0.017436 0.055758 90 0.017133 0.054667 10100 0.01675 0.052910 11100 0.016838 0.053351 12120 0.016680 0.052855 13130 0.016882 0.053854 14140 0.017027 0.054219
Conv_bou_190_ scenarios.png	Conv_bou_200_ scenarios.png	Conv_bou_210_ scenarios.png	Conv_boo_220_ scenarios.png	Conv_boa_230_ scenarios.png	Conv_bou_240_ scenarios.png	Conv_bou_250_ scenarios.png	Conv_bou_260_ scenarios.png	Conv_bou_270_ scenarios.png	15 150 0.017011 0.053979 16 106 0.017426 0.055319 17 170 0.017426 0.055319 17 170 0.017834 0.056689 19 190 0.017836 0.056887 22 200 0.017462 0.056587 21 210 0.017462 0.055533 23 230 0.017452 0.055412
Conv_bou_280_ scenarios.png	Conv_bou_290_ scenarios.png	Conv_bou_300_ scenarios.png	Conv_bou_310_ scenarios.png	Conv_bou_320_ scenarios.png	Conv_bou_330_ scenarios.png	Conv_bou_340_ scenarios.png	Conv_bou_350_ scenarios.png	Conv_bou_360_ scenarios.png	24 240 6.017248 6.054687 25 250 6.01743 0.055113 26 260 6.017338 0.055023 27 270 6.017928 0.054295 28 280 6.017223 0.054679 29 290 6.017228 0.054673 30 300 0.017057 0.054605 31 310 6.017057 0.054605 31 310 6.051704 0.054623 23 230 6.0517104 0.054623
Conv_bou_370_ scenarios.png	Conv_bou_380_ scenarios.png	Conv_bou_390_ scenarios.png	Conv_bou_400_ scenarios.png	Conv_bou_410_ scenarios.png	Conv_bou_420_ scenarios.png	Conv_bou_430_ scenarios.png	Conv_bou_440_ scenarios.png	Conv_bou_450_ scenarios.png	33 330 0.016827 0.653031 34 340 0.016817 0.653000 35 350 0.016743 0.652754 36 360 0.016610 0.65235 37 370 0.016516 0.652365 39 390 0.016737 0.652766 40 400 0.016622 0.652685 41 410 0.016682 0.652604
Conv_bou_460_ scenarios.png	Conv_bou_470_ scenarios.png	Conv_bou_480_ scenarios.png	Conv_bou_490_ scenarios.png	Conv_bou_500_ scenarios.png	conv_file.txt				$ \begin{array}{c} 42 \ 420 \ 0.016666 \ 0.052568 \\ 34 \ 320 \ 0.015566 \ 0.052198 \\ 44 \ 440 \ 0.016624 \ 0.052191 \\ 45 \ 450 \ 0.016587 \ 0.052301 \\ 47 \ 470 \ 0.016587 \ 0.052301 \\ 47 \ 470 \ 0.015585 \ 0.052281 \\ 48 \ 420 \ 0.015642 \ 0.052271 \\ 49 \ 490 \ 0.015643 \ 0.052271 \\ 9 \ 490 \ 0.016541 \ 0.05204 \\ 50 \ 500 \ 0.016514 \ 0.052024 \\ \end{array} $

PyCOMPSs workflow

eFlows4HPC

First end-to-end version of PTF orchestrated with PyCOMPSs

Deployment on HPCWaaS (TOSCA - ALIEN4CLOUD)

- PApplications & Catalog		🛔 steven 🏐 -
New Application		
Search.		Q T
PTF HPCWaaS deployment and execution Probabilistic Tsunam	i Forecast run	• 🗉
ne Applications 🔥 Catalog		🛓 steven 🍎 🗸
PTF HPCWaaS deployment and execution Environment Topology Editor (0.1.0-SNAPSHOT)		
Save & Download O Undo C Redo V Remote 1 Public O Auto-Validation	Selected node	<>> > < Q Q <>
And the second s	PycomPsJob 🖉 Type: PycomPsJob o	1 n n n n n n n n n n n n n n n n n n n
●) inputs and	a, e) (e environment (2)	gille c
Versilier	a, e le submission_para (2)	с (
Anthread Contemport	a e application (2)	5
		5 0 C
PycompsJob		0 (00) 0
	se tosca_id	uterific
	tosca_name	101
	● state	a 2
	- Prerequisites	penden
	img_transfer Node	💊 0.00 (00) 0
	environment ExecutionEnvironment dependency Node • Relationships	% 0.00 (00) % 0.00 (00)
	dependsOnAbstractEnvir Type DependsOn Target AbstractEnvironment	• 5

Edit submission_params 🙍				×
submission_params				
• submission_params	compas_modules	CZ .		
compss_modules	num_nodes	10/10		c
= num_nodes ✓	005	debug (2 m		2
- python_interpreter -				-
= extra_compss_opts 🛩	python_interpreter	bythous (S. IC		c
	extra_compss_opts	-env_script+S(sp. C# 🛛 🖒		0
Edit application 💼				×
application / arguments				
	^			^
= command 🖌	arguments	*	_	
 arguments ✓ 	0	-seistype Sseis,t. (218-	5 0 E	
-0~	1	-parameters_file _ CF 210+	D 0 🚺	
-10	2	-data_path S(dat. CF	5 e 🚺	
-29		- out with fine and		
= 3 0		-run_pain stron UP 10 +	50	
-6-	4	-templates_path (# 216 *	00	
-6-	5	-kagan_weight S{ (2* 🚯 *	o o 🔳	
-7.5	6	-mare_weight \${ (21).	2 0 0	
-1.0	v			~

9 -	Applications	atalog			
PTF HPCV	VaaS deployment and ex	ecution	Environment		
 Deploy 	yed				
Home	Prepare next deploy	ment 0.1.	0-SNAPSHOT M	anage current dep	loyment 0.1.0-SNAPSHO
×i	-				
_					
🖌 🗸 Ver	sion 🖌 🖌 Topology	🖌 Input	ts 🖌 🛩 Locations	 Matching 	 Review & deploy
1 Olion	es matching Nodes i	matching			
	AbstractEnvironment	t -	Туре		
0	AbstractEnvironment Name bsc_nord3:1.0.0	t -	Type eflows4hpc.env.noc	des.AbstractEnviro	nment
0 0	AbstractEnvironment Name bsc_nord3:1.0.0 bsc_amd:1.0.0	t -	Type eflows4hpc.env.noc eflows4hpc.env.noc	Jes.AbstractEnviro	inment
0 0 0	AbstractEnvironment Name bsc_nord3:1.0.0 bsc_amd:1.0.0 CMCC_Zeus:1.0.0	t - Ø	Type eflows4hpc.env.noc eflows4hpc.env.noc eflows4hpc.env.noc	les.AbstractEnviro les.AbstractEnviro les.AbstractEnviro	nment nment
0 0 0 0	AbstractEnvironment Name bsc_nord3.1.0.0 bsc_amd:1.0.0 CMCC_Zeus:1.0.0 bsc_mn4:1.0.0	t -	Type eflows4hpc.env.noc eflows4hpc.env.noc eflows4hpc.env.noc eflows4hpc.env.noc	Jes.AbstractEnviro Jes.AbstractEnviro Jes.AbstractEnviro Jes.AbstractEnviro	nment nment nment

Further developments: High-Resolution PTF-PyCOMPSs workflow

High resolution HySea simulations

Example of one scenario for the 2003 earthquake and tsunami of Boumerdes

Further developments: High-Resolution PTF-PyCOMPSs workflow

Hazard Curve at point A Hazard Curve at point B 1.0 0.8 0.8 (%) Point A Point B 0.6 -0.6 -Tide-gage of 0.4 0.4 Probi 0.2 -0.2 -----Bathymetry/Topography (m) 0.0 0. 10-5 10-4 10-3 10-2 10^{-1} 10⁰ 101 10 -40 -20 20 40 10-5 10-4 10^{-3} 10^{-2} 10^{-1} 10⁰ 10¹ 107 Tsunami intensity (m) Tsunami intensity (m)

Aggregation of the results of 500 simulations for the forecast calculation Calculation of the hazard curves at each point of the grid

Creation of mean or percentiles maps (mean, p5, p95) - Extraction of the values at specific locations

Further developments: ML / AI

Tsunami Forecasting exploiting Regression and Classification Trees

This activity is aimed at developing machine learning approaches based on regression and classification trees, to model and forecast tsunami simulation results.

Inundation Prediction from Offshore Time-Series

To use Machine Learning to Predict High-Resolution inundation (expensive computations) from Offshore Time-Series (far cheaper computations) for Accurate Hazard Prediction in Urgent Tsunami Computations

Conclusions

- The development of UC workflows for earthquakes and tsunamis has been incorporating the deployment of advanced tools and the development of complex tasks to reach an operational level.
- The sustainability and improvements in the workflows will be done under ChEESE-2p and DT-GEO projects

Thank you

www.eFlows4HPC.eu

@eFlows4HPC

(in) eFlows4HPC Project

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

Requirements & Metrics for Pillar III workflows

ID	Name	Priority
1	Urgent computing access	must
2	Data accessibility	should
3	Data replication	must
4	Execution robustness	must
5	Infrastructure interoperability	must
6	Portability and Reusability	may
7	Streaming Data Source	must
8	Integrated workflow manager	must
9	Integration with permanent storage	must
10	Inference with online/offline ML models	must
11	DA integration	may
12	Workflow malleability	should

Acronym	Name	Description
RT	Response time	End-to-solution time constraints in an urgent computing context. This metric is defined as the clock time measured from the event reception until a first valid solution for the event is delivered to the stakeholders such as civil protection agencies.
UAR	Urgent Assignment of Resources	Time to obtain necessary resources for an urgent computing execution. The inclusion of this metric quantifies the QoS in HPC facilities that provide UC services. Moreover, it is a measure to evaluate if the adopted policies are adequate for an UC execution
RUQ	Results Uncertainty Quantification	High-fidelity and high-accuracy results. This metric is proposed to fulfill the specific UCIS4EQ workflow. RUQ metrics is related to the uncertainty of the service outputs, as it is crucial to constrain and reduce the uncertainty of provided impact estimates.
Conv	Convergence	This metric is proposed to evaluate the specificity of the PTR/FTRT requirements in particular the convergence of the results based on a reference solution

Deployment with HPCWaaS platform

To facilitate the reusability of these complex workflows in federated HPC infrastructure.

Integration of the UCIS4EQ in the HPCWaaS platform describing the TOSCA components using the Alien4Cloud software.

TOSCA components involved in the deployment and execution of the UCIS4EQ workflow:

Setup

phase:

The **Abstract_HPC_Site** component defines the properties (login node address, CPU architecture, supported container engine, ...) of the HPC system where we mean to deploy and run the workflow.

Deployment

phase:

The **UCIS4EQ_Image_Creation** component implements the interaction with the eFlows4HPC Container Image Creation (CIC) service to build a container Image including all the software components required for the workflow. The **UCIS4EQ_Image_Transfer** component implements the interaction with the Data Logistics Service (DLS). It depends on the UCIS4EQ_Image_Creation component because it has to know the URL of the generated container image in order to perform the image deployment. The **Region_Data_deployment** component interacts with the DLS, but in this case it is configured to download the data of a region (maps, etc.) from the data-set stored in the UCIS4EQ B2DROP repository.

Execution phase:,

two TOSCA components (Run_Simulation and Swarm_post_processing) and **two data pipelines** (the stage-in of the event data to simulate (*Event_data_transfers*) and for the stage-out to upload the generated plots at the end of the swarm post-processing workflow (*Aggregated_plots_upload*).