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● Sea Level Rise (SLR), Glacial 
Isostatic Adjustment (GIA)

● Permafrost (nuclear waste 
repo) 

● Glacier Outburst Floods 
(GLOFS)

● Calving events
○ Including ice front calving and 

thereby triggered tsunamis
○ Calving from overhanging 

glaciers
○ Complete disintegration of 

glaciers
○ Ice and snow avalanches
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Glacier Cryospheric Hazards
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Animation: Adrian Luckman, 

Swansea Univ., UK

but also a solid
Ice is a fluid



Sea Level Rise: Data Assimilation – Inverse Methods

Input parameters

• Friction 

coefficient ßi

viscosity

Forward 

Ice-sheet model

Computed 

surface 

velocities

Observed 

surface 

velocities

Mismatch = cost function  J

Optimization Algorithm

Input: Ji , ßi,  dJ/dß|I

Output: ßi+1

ßi+1



● Framework for Ice 
Sheet Ocean 
Coupling (FISOC)

● Based on ESMF 
(interpolation, 
meshing  routines) 

Gladstone, R., Galton-Fenzi, B., Gwyther, D., Zhou, Q., Hattermann, T., Zhao, C., Jong, L., Xia, Y., Guo, X., Petrakopoulos, K., Zwinger, 
T., Shapero, D., and Moore, J., 2021. The Framework For Ice Sheet–Ocean Coupling (FISOC) V1.1. Geosci. Model Dev.,14,889–905. 
https://doi.org/10.5194/gmd-14-889-2021.

Sea Level Rise: Ice-ocean Coupling

https://doi.org/10.5194/gmd-14-889-2021


Sea Level Rise

https://www.climate-cryosphere.org/wiki/images/5/5b/Antarctic_exp_design.png

Edwards et al., 2021



Glacier Hazards: Calving (SC in ChEESE2)



Time scale separation:

Calving processes

Zarrinderakht, M., Schoof, C., and Zwinger, T.: A leading-order viscoelastic model for crevasse propagation and calving 

in ice shelves, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-807, 2023. 



IK = KIc ⇒ crack propagates

Modelling crevasse propagation

Freund (1990)

Calving processes

• Elastic model (GNU-Octave) computing 
crack propagation based on intensity factor 
(below Maxwell time)

• Viscous model (Elmer/Ice) computes the 
geometry change and provides updated 
stress-field

Zarrinderakht, M., Schoof, C., and Zwinger, T.: A leading-order viscoelastic model for crevasse propagation and calving 

in ice shelves, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-807, 2023. 



Modelling crevasse propagation

Zarrinderakht, M., Schoof, C., and Zwinger, T.: A leading-order viscoelastic model for crevasse propagation and calving 

in ice shelves, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-807, 2023. 

Calving processes



Results
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Zarrinderakht, M., Schoof, C., and Zwinger, T.: A leading-order viscoelastic model for crevasse propagation and calving 

in ice shelves, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-807, 2023. 



● Coupling between Elmer/Ice and 
HiDEM (discrete particle model) 

Åström, J.A., D. Vallot, M. Schäfer, E.Z. Welty, S. O’Neel, T.C. Bartholomaus,Yan Liu, T.I. 

Riikilä, T. Zwinger, J. Timonen, and J.C. Moore, 2014. Termini of calving glaciers as self-

organized critical systems, Nature Geoscience, 7, 874-878

Calving processes



Memon S., D. Vallot, T. Zwinger, J. Åström, H. Neukirchen, M. Riedel and M. Book, 2019. Scientific workflows 

applied to the coupling of a continuum (Elmer v8.3) and a discrete element (HiDEM v1.0) ice dynamic 

model, Geosci. Model Dev., 12, 3001-3015, doi:10.5194/gmd-12-3001-2019

Calving processes

HiDEM

https://doi.org/10.5194/gmd-12-3001-2019


Calving processes

Memon S., D. Vallot, T. Zwinger, J. Åström, H. Neukirchen, M. Riedel and M. Book, 2019. Scientific workflows 

applied to the coupling of a continuum (Elmer v8.3) and a discrete element (HiDEM v1.0) ice dynamic 

model, Geosci. Model Dev., 12, 3001-3015, doi:10.5194/gmd-12-3001-2019

https://doi.org/10.5194/gmd-12-3001-2019


Glacier Hazards: Glacial Ouburst Floods (GLOFs) real-time 

simulation (input from Tómas Jòhannesson, IMO)



• Increased volcanic activity melts ice and 
creates highly elevated subglacial lake

• The initial subglacial flood path is created by 
the passage a localized wave of over-
pressure followed by lower pressure that 
leads to rapid lifting and subsequent partial 
lowering.

• The glacier is initially lifted and accelerated 
downslope over a several-km wide area.

• The flood path subsequently develops 
conduits through the traditional melt–
discharge feedback analyzed by Nye (1976).

• Rapid inflow into the floodpath, for example 
during subglacial eruptions may lead to very 

rapid propagation of the flood wave down the 
glacier bed.

See Einarsson et al. (2016). A spectrum of jökulhlaup dynamics revealed 
by GPS measurements of glacier surface motion. Ann. Glaciol., 57(16).

GLOFS: Jökulhlaups Conceptional model

22 April 2006

Oddur Sigurðsson
Photo: Tómas 

Jóhannesson



● Visco-elastic Maxwell model

● Introduction of visco–elastic stress (Wu, 2004)

○ At the same time, we introduce pressure Π to enable 
incompressibility

○ Viscosity, 𝜈, expressed as shear thinning (Glen) using 
time derivatives of deformation (strain)

○ “Contact problem” solving variational inequality by 
Elmer-library

𝜈

By Pekaje at English Wikipedia - Transferred from 
en.wikipedia to Commons., Public Domain

GLOFS: Conceptional model



• Elmer FE-modelling environment
• Visco–elastic glacier model with Glen’s 

flow-law viscosity combined with linear 
elasticity.

• Contact problem implementation to
represent the time-dependent
development of the subglacial cavity
filled by flood water.

• The current model under development
computes the response of the glacier
to a prescribed pressure disturbance
that travels downglacier.

• A planned further development will 
couple a thin-sheet model component
based on the Reynolds equation for 
fluid flow in a shallow or thin enclosure 
with Manning friction with the glacier 
model.

Zwinger et al. (2020)

Numerical model 

• The overall dimensions of the 
model are based on the geometry 
of Skaftárjökull outlet glacier and 
the flood path of jökulhlaups in 
river Skaftá.

• A 50-m deep, smooth depression 
in the bottom topography 
represents a subglacial valley 
along which the flood travels.

• The pressure disturbance is 
~3000 m long and ~2000 m wide, 
with a +200 kPa (over)pressure 
near the tip that decreases 
linearly to a −50 kPa 
(under)pressure with respect to 
overburden at the back, extending 
upstream as far as the pressure 
bulge has travelled.



• Elmer FE-modelling environment
• Visco–elastic glacier model with Glen’s 

flow-law viscosity combined with linear 
elasticity.

• Contact problem implementation to
represent the time-dependent
development of the subglacial cavity
filled by flood water.

• The current model under development
computes the response of the glacier
to a prescribed pressure disturbance
that travels downglacier.

• A planned further development will 
couple a thin-sheet model component
based on the Reynolds equation for 
fluid flow in a shallow or thin enclosure 
with Manning friction with the glacier 
model.

Zwinger et al. (2020)

Numerical model 



Passage of the simulated subglacial flood front; 
comparison with the October 2008 flood

Same somersault motion in 

simulation (right) compared 

to GPS signal left)



Measured ice-surface 
elev. and water level 
in the cauldron

Computation in 
Elmer/Ice

Measured lowering of 
cauldron

Estimated 
timings and 
subglacial 
discharge of 
the flood

Measurements of timing 
and magnitude of uplift 
along flow-path

Pre-processed 
data such as 
bedrock 
elevation and 
surface 
elevation (DEM)

Measured/back-calcul-
ated flood discharge at 
outlet

Post-processing 
after event

Updated initial flood 
path geometry

GLOFS: Suggested workflow for outburst simulation
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Glacier Hazards: Glacial Ouburst Floods (GLOFs) 

hazard mapping (input from Samuel Cook,UNIL)

potentially



GLOFs: Hazard Mapping
● Rate of glacier thinning doubled globally in last 20 

years (Hugonnet et al. 2021)

● Glacier retreat uncovers overdeepenings that 
can fill and become lakes dammed by unstable 
features (moraines, relict ice…)

● These lakes can drain catastrophically in 
glacier lake outburst floods (GLOFS) 

● Frequency is predicted to increase into next 
century due to lagged response to warming 
(Harrison et al., 2018)

● Therefore, need better modelling of timing and 
location of glacier-lake formation, and the 
extent of damage should they cause a GLOF

Picture: D. Binder, ZAMG



Iceland

270 events: 41 volcanic; 167 
ice; 62 unknown 

European Alps

301 events: 29 moraine; 197 
ice; 1 bedrock; 71 unknown

Scandinavia

212 events: 4 moraine; 94 
ice; 23 unknown

Recorded GLOFS in Europe

After Carrivick and Tweed (2016)

One inventory covering 20 GLOF-prone countries 
around the world (Iceland, Alps, Andes, 
Himalaya) showed 1348 GLOFs from 332 sites 
over the last millennium, 36% of which caused 
recorded deaths or damage (Carrivick and 
Tweed, 2016)



Workflow

Invert ice 

thickness

Run ice-flow 

model

Identify location and 

timing of uncovering 

of overdeepenings 

(i.e. lake basins)

Model filling rate 

and volume of basin 

(glacial input + 

precipitation)

Generate debris-

flow training set 

from simulations

Identify crucial input 

parameters for 

modelling GLOF 

impacts (simulations, 

fieldwork)

Train 

emulator

Apply 

emulator

Output maps of 

GLOF impact area, 

flow height and 

sedimentation



What else?

potentially



What else?

https://www.theguardian.com/world/2022/jul/03/deaths-

glacier-breaks-marmolada-mountain-italy

● Glacier-permafrost interaction 
(including basal hydrology) for 
glacier stability (e.g. Marmolada 
tragedy in 2022 or Aru glaciers – to 
the right)

Gilbert et al., 2016



What else?

● Glacier-permafrost interaction 
(including basal hydrology) for 
glacier stability

● Long term studies of glacier 
hydrology as well as permafrost for 
nuclear waste repository safety 
assessment

Animation 
courtesy Denis 
Cohen, CoSci



What else?

● Snow avalanches 

○ Hazard zone mapping

○ Evaluation of protective measures 
(see r.h.s.)

avalanche deflecting dams in western Norway (photos: NGI)



Thank you!

@cheese-coe

@cheese-coe

http://cheese2.eu

@cheese_coe@techhub.social

http://cheese2.eu/
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