
Overview of 
Autosubmit, Cylc, 
ecFlow and workflows 
in ESiWACE

Bruno P. Kinoshita, Miguel Castrillo

17 October 2023



Outline
● Workflow managers, meta-schedulers, experiment managers

● An overview

○ Autosubmit

○ Cylc

○ ecFlow

● Final thoughts



Workflow managers, meta 
schedulers, experiment 

managers



Workflow managers

A workflow manager is a utility to run computational workflows.

A computational workflow is a series of steps in a certain sequence 
to complete a process (a graph of tasks). These steps can require 
running scripts and tools on a computer platform.

Besides the three workflow managers listed here, there are many 
other examples: Airflow, Jenkins, Nextflow, Luigi, Conductor, 
StreamFlow, Pegasus, COMPSs, WfExS, Dagster, cwltool, …



Why workflow managers?

What is a workflow manager good for?
The traditional way

Login to the 
remote cluster

Using a workflow manager

Execute run 
batch scripts

Execute post 
scripts

Move final 
results 

On error: user 
intervention

When?
Limited HPC storage
Data dependencies

Edit 
experiment 

configuration 
Model run Post-processing Transfer

On error: possibility to 
automatic resubmit

Manual 
steps

Automatic 
steps

Wait… until data is ready

Automatic config 
checks

On error: user 
intervention

On error: possibility to 
automatic resubmit As soon as dependencies 

are fulfilled

Remote interactive 
monitoring (unique 

endpoint, visual, 
web-based, embedded log 

files)

× n_platforms

multiplatform

Shared 
configuration

Update Auto-model

Deploy the 
model

Model 
deployment



Meta schedulers

A meta scheduler is a utility that optimizes the scheduling of tasks by 
combining multiple job schedulers into a single unit.

You submit jobs to a meta scheduler, which in turn will organize 
these jobs and submit them to other job schedulers (PBS, Slurm, at, 
cloud, etc.) trying to optimize how resources are used.

Many workflow managers are also meta schedulers (but not all 
workflow managers).



Experiment managers

An experiment manager is a utility that maintains scientific 
experiments.

It assigns unique & standardised IDs, keeps track of experiment 
configuration and metadata, and allow users to safely manage 
and share experiments.

Examples: prepIFS/IFShub, Autosubmit, rosie, mkexp, …



Autosubmit, Cylc, ecFlow



The common parts

All three are Open Source workflow managers that work as 
meta-schedulers with platforms such as PBS and Slurm.

They also support job retrials, user management, and log 
retrieval from remote platforms. There are many more 
commonalities amongst the three (and many differences too).

We present just a few in this overview.



Autosubmit



Autosubmit



Autosubmit

Autosubmit is a Python experiment and workflow manager. 
Users create, configure, and share experiments (with unique & 
standardised IDs).

These experiments contain a workflow that can be scheduled to 
run on local and remote platforms (e.g. HPC).

It was created to manage climate experiments at the BSC.



GUI Screenshot



Configuration Screenshot



Job Wrappers

Autosubmit is able to run workflows in environments where 
multiple users compete for resources to schedule jobs, by 
“wrapping” multiple jobs and submitting as a single job.

This is essential for scheduling in HPC environments like 
MareNostrum 4, with limited resources shared by many groups.



Horizontal Wrapper

Vertical Wrapper
Job Wrappers



Members, Chunks

Autosubmit configuration contains concepts familiar to climate 
researchers, such as start dates, members, and chunks.

They are useful for configuring experiments for ensemble 
climate simulations.



Other

Autosubmit provides an official Docker image, and is also the 
only that conforms to the RO-Crate standard (for metadata, 
provenance, FAIR).

Autosubmit and Cylc support connecting to remote platforms in 
an unidirectional way (via polling).

Both Autosubmit and ecFlow are able to deploy to ecFlow 
servers. Autosubmit uses PyFlow to generate an ecFlow suite.



Autosubmit + PyFlow (ecFlow)

(in theory)
Cylc
Nextflow
PyCOMPSs
CWL
…



Cylc



Cylc



Cylc

Cylc (now Cylc Flow) is a workflow manager written in Python, 
created at NIWA, New Zealand, to manage NWP workflows.

NIWA and MetOffice use it to manage a large number of HPC jobs 
every year. Cylc 8 was redesigned to use Python 3 with a new Web 
interface.

It is the option with more features, and most modern UI. However, it 
is also the one with the steepest learning curve.



GUI Screenshot



Configuration Screenshot



TUI



Jinja2

Used in Cylc template scripts, Jinja allows users to customize 
their workflows using Python and importing Python modules.

Users are able to add conditionals to their scripts, and control 
the execution of tasks, as well as modify the workflow graph.



Workflow lifecycle hooks

Users are able to execute actions based on certain workflow lifecycle stages, through 
event handlers.

● Startup
● Shutdown
● Abort
● Workflow timeout
● Stall
● Stall timeout
● Inactivity timeout

It also supports task lifecycle event handlers (with other stages for Tasks).



Cycles, Repeats

As both Cylc and ecFlow were developed for running 
operational NWP workflows, both support repeats, or cycles.

This way you are able to execute the same workflow multiple 
times, scheduling as many tasks as soon as possible (e.g. you 
can start tasks of the second cycle before the first has 
completed).



Cycles, Repeats
Left: Cylc cycling integer cycle points
Middle: ecFlow cron triggers
Bottom: ecFlow Repeats



Advanced Cycling

Cycles in Cylc can be based on ISO 8601 dates and periods 
(with isodatetime library), or integers.

Cylc unrolls the cycle loop to create a non-cycling workflow 
composed of repeating tasks - no barrier between cycles.

It is also the only one that handles advanced cycling, e.g. a -> 
a (actually a.1 -> a.2, or with dates), and multiple & merging 
“flows”.



Advanced Cycling

A flow is a single logical run through the graph. 
Cylc supports multiple concurrent flows over the 
same graph.
• In a single flow

• foo.1 triggers bar.1
• bar.1 triggers baz.1 and bar.2
• bar.2 may start before/at the same time 

baz.1 is started/submitted/running
• You can have multiple cycles running in 

parallel
• You can start flows to re-run tasks or cycles, 

and they can be merged



Families

Cylc and ecFlow both support grouping workflow tasks under 
“families”. This is useful as you can use a family in a similar 
way to a task, in the graph dependency.



Client and Server

Cylc and ecFlow work with client-server architectures. In 
ecFlow you have the ecFlow server, and clients such as Python, 
ecFlow command-line, and the ecFlow GUI.

Cylc has an extra player, the UI Server, but also command-line 
and GUI clients.



Conda

Cylc and ecFlow provide official Conda packages.



ecFlow



ecFlow



ecFlow

ecFlow was created by the ECMWF, as an evolution of SMS. It has 
been used over several years to run NWP workflows.

As it is written in C++, it has excellent performance when managing 
multiple workflows (suites). Its GUI is also the most complete.

While its cyclic workflows are not as powerful as Cylc’s, it can repeat 
parts of the workflow and also use cron and repeats to trigger tasks 
and families.



GUI Screenshot



Configuration Screenshot



Configuration Screenshot



PyFlow

ecFlow has had a Python API for a long time. ECMWF released 
now a Python library called PyFlow, that is able to generate 
ecFlow workflows with a simple Python API.



troika

While all three workflow managers support scheduling jobs 
using remote platforms, ecFlow is the only of the three that uses 
a dedicated library for that: troika.

It provides a simple configuration model, and allows users to 
add custom platforms (called sites).

FOSDEM 23, “Troika: Submit, monitor, and interrupt jobs on any HPC system with the same interface” 
https://archive.fosdem.org/2023/schedule/event/troika_hpc_jobs/ 

 

https://archive.fosdem.org/2023/schedule/event/troika_hpc_jobs/


Complete GUI

ecFlow users are able to manage the complete workflow (suite) 
using only the GUI (although the command-line client is useful 
in some cases too).

The Autosubmit GUI is read-only, and the Cylc 8 UI still has 
features that are being migrated from Cylc 7, or that have not 
been implemented yet.



Brew

ecFlow is the only of the three that provides a brew installer for 
MacOS.



Final thoughts



This is a general overview

The best workflow manager depends on the use case.

Some features might help you to decide which workflow manager to use 
(installation method, networking security limitations, maintenance, etc.).

This is a general overview, and it may be unfair as there are many other 
features included in each of these workflow managers. Check out their 
websites for more before making a decision on which one to use.



Personal take on this

I hope for more integration between workflow managers (like what is happening 
in Destination Earth with Autosubmit & ecFlow).

Also for more open standards to be adopted, like CWL, WDL, RO-Crate, FDO, 
DRMAA, or even closed standards like ISO-8601 (or its newer versions).

Finally, it would be great to have more “building block” shared among workflow 
managers. e.g. have Autosubmit Jobs Wrappers available in other workflow 
managers, or Cylc’s date cycles (isodatetime), or ECMWF’s Troika, or DRMAA 
used by more tools.



Work in ESiWACE3

These workflow managers are used by ESiWACE members to 
run weather and climate workflows — Cylc and Autosubmit 
have received funding.

There is a task in ESiWACE3 to containerize EC-Earth 4, a 
community ESM, and to orchestrate it with Autosubmit. 
Containerized models improve portability across workflow 
managers, and HPC platforms.



Questions?
● https://autosubmit.readthedocs.io/

● https://cylc.github.io/

● https://ecflow.readthedocs.io/

Thank you

bruno.depaulakinoshita@bsc.es

https://autosubmit.readthedocs.io/
https://cylc.github.io/
https://ecflow.readthedocs.io/

