

## Pillar I

<u>Riccardo Rossi</u>, Joaquin Hernandez, Sebastian Ares de Parga, Nicolas Sibuet, Raul Bravo – CIMNE Gianluigi Rozza, Giovanni Stabile, Nicola Demo, Karim Yehia - SISSA Mario Ricchiuto, Nicolas Barral, Sourabh Bhat, Pierre Clouzet - INRIA

Barcelona, Spain



This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway.



# PILLAR I Digital Twin in Manufacturing



21/03/2023

 $\bigcirc$ 

2 - Status of WP4 Pillar I: ROM: Digital twin in Manufacturing

#### Goals of the Pillar



- Provide an integrated workflow enabling the development of ROMs from their inception to their deployment
- Enable the use of HPC resources to speed up the generation process and enable the solution of large problems



#### PILLAR CONTRIBUTORS (jointly with BSC and UPV)



#### "Standard" ML/AI workflow



INFERENCE



"BLOCK BOX" MODEL

#### Reduced Order Modelling workflow



INFERENCE



MODELS ARE NOT BLACK BOXES!!

#### **Project Vision**



(Replace demonstrator by the chosen one!)

#### The big picture

#### SERVER:

- Hi compute capabilities
- Needs
   communication
- Cannot be "vital"
- Prone to "cyberattacks"?



#### EDGE: Low compute ٠ capabilities No ٠ communication needed Can take • autonomous decisions Recomputing ٠ "cheaper" than moving data around?

Safer?

#### The "link to the rest of the world"

Sensor feedback can be incorporated in the ROM once such a model is available.



#### •A thermal problem





# How Is that achieved?



21/03/2023

 $\bigcirc$ 

11 - Status of WP4 Pillar I: ROM: Digital twin in Manufacturing





NON-INTRUSIVE

INTRUSIVE

MORE PHYSICS (LESS MODULAR!)

MORE TRAINING DATA (LESS PREDICTIVE?)



21/03/2023

 $\bigcirc$ 

12 - Status of WP4 Pillar I: ROM: Digital twin in Manufacturing

#### **ROM workflow**

eFlows4HPC



 $\bigcirc$ 

0

 $\bigcirc$ 

# Parallelized using a Task-Based Approach



CFD Example with 1M dofs Execution in 4 nodes of supercomputer Nord3





21/03/2023



# Intrusive ROM workflow



21/03/2023

 $\bigcirc$ 

15 - Status of WP4 Pillar I: ROM: Digital twin in Manufacturing



#### In essence we harvest past simulations for "patterns" which we then leverage to accelerate simulations



SVD

• Example





Picture with 5% of the modes

SVD

• Example



Picture with 10% of the modes

SVD

• Example



Picture with 25% of the modes

• Example



SVD



Picture with 50% of the modes

Based On the Idea of "Projection"

#### IDEA:

only do operations using few modes holding the "important" information

- ... as in modal analysis ... except:
- Done "a posteriori" from exploring available solutions
- Applicable to nonlinear problems



May lead to a breakthrough solution
High Risk
Academic Task (Post-Doc, PhD or master projects)



Some experimental developmentA working prototype with less associated riskSuitable for a small test problem



- Rewriting the prototype in more efficient way (Cpp/Fortran)
- Making it more generic
- Avoiding common bottlenecks
- Increasing the code quality
- Adding QA



More physics and calibration
Improving the robustness
More QA
Improving the code quality



#### The Solver +

- GUI
- Validation
- Automatization
- Final tuning
- Maintenance
- Documentation
- Distribution
- Support

## **Kratos Multiphysics**

# An open framework for parallel Multi-physics programs development

- Since 2001
- ~ 1 million lines of code
- ~ 100 developers
- 20 years of development
- Very modular
- High performance
- Object Oriented C++
- Extensive Python interface
- Open Source and Free (BSD Licence)



#### https://github.com/KratosMultiphysics

## **Kratos Multiphysics**



### Highly Modular Design & Multi-disciplinarity



#### Flexible License





# Non-Intrusive ROM workflow



21/03/2023

 $\bigcirc$ 

31 - Status of WP4 Pillar I: ROM: Digital twin in Manufacturing



**Goal:** Implementation of a completely **data-driven non-intrusive ROM** using **nonlinear dimensionality reduction** (**AE**) in a **distributed** environment.



## Non-Intrusive ROM workflow (Non-Linear Reduction + Data Parallelism) V eFlows4HPC







#### EZyRB:

- Open source Python package developed by SISSA mathLab
- → Completely data-driven, Non-intrusive ROM (linear & non-linear reduction)

#### EZyRB structure:

- → Database class
- → Reduction classes:
  - 1. POD (SVD, RSVD, SVD via correlation matrix)
  - 2. FFAE (PyTorch sequential)
  - 3. FFAE (new class PyEDDL data parallelism same API) -

#### → Approximation/interpolation classes:





### Non-Intrusive ROM workflow (Parallel Execution)

COMPSs





**To benefit** from **distributed environments** we need to parallelize all EZyRB classes:

- → Database class
- → Reduction classes:
  - 1. POD (SVD, RSVD, SVD via correlation matrix)
  - 2. FFAE (PyTorch sequential)
  - 3. FFAE (new class PyEDDL data parallelism same API)

#### Approximation/interpolation classes:



The **simultaneous execution** using **PyCOMPSs** can enhance the process of **multiple predictions** or **error calculations** where the model has to be executed multiple times for different parameters.



# **THANK YOU!**

35 - Status of WP4 Pillar I: ROM: Digital twin in Manufacturing

21/03/2023