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1. CEEC project
Some context

CEEC focuses on engineering, aeronautic and atmospheric engineering topics such as 
shock- boundary layer interaction and buffet on wings at the edge of the flight envelope, high 
fidelity aeroelastic simulation, topology optimization of static mixers.



1. CEEC project
Some context

Description: 
This LHC consists of an aeroelastic simulation of an elastic wing model in the 
transonic regime. This is a benchmark case derived from the HIRENASD 
Project (http://heinrich.lufmech.rwth-aachen.de/en). The wing configuration and 
the geometry is typical from large passenger transport aircraft and its dynamic 
test flight conditions are also equivalent to real-in-service cruise flight 
conditions.

Challenges that are being addressed:
• Application of current LES turbulence models for aeroelastic cases with compressive flows under transonic 

regimes.

• The numerical model should be able to run in HPC clusters to obtain enhanced performance with low time-
to-solution.

• Ensure efficient coupling strategies between the Flow and Solid solvers.

http://heinrich.lufmech.rwth-aachen.de/en


1. CEEC project
Some context

Task 4.2: ML-based sub-models:

Integrate ML models into the CFD 
workflow to accelerate physical models. 



2. Our CFD approach

• The result so far:

• Language: Fortran
• GPU port path: OpenACC
• Required libs: HDF5, MPI
• Git repo: https://gitlab.com/bsc_sod2d/sod2d_gitlab/
• … and btw, the code is 3D!

SOD2D: Spectral high-Order coDe 2 solve partial Differential equations

SOD2D

https://gitlab.com/bsc_sod2d/sod2d_gitlab/


• The compressible Navier-Stokes equations on a domain Ω× 𝑡!, 𝑡" :

2. Physical model

𝜕!𝜌 + ∇ ⋅ (𝜌𝐮) = 0

𝜕! 𝜌𝐮 + ∇ ⋅ 𝜌𝐮⊗ 𝐮 + ∇𝑝 − ∇ ⋅ 𝝉 = 𝐟

𝜕!𝐸 + ∇ ⋅ 𝐸 + 𝑝 𝐮 − ∇ ⋅ 𝝉𝐮 − ∇ ⋅ 𝜅∇𝑇 = S
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2
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• Viscosity is calculated by means of Sutherland model:

• Additional required relations to close the system:

2. Physical model
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2. Physical model
By spatially filtering the NS equations:

•Smagorinsky
•Dynamic Smagorinsky
•Wall-Adapting Local Eddy-Viscosity (WALE) Model
•Vreman: 

Specific challenges:

•Numerics interact with the LES model
•Usually the mesh is the filter 
•Scales at the wall are case dependent
•More sensible to geometry and 
boundaries



3. Numerical model

• Spectral formulation of the Continuous Galerkin Finite Elements
model (SEM) applied to the spatial terms in the Navier-Stokes
equations.

• The Lobatto-Gauss-Legendre (LGL) quadrature is used in the
developed algorithm. (nodes are non-equispaced, avoiding the
Runge effect on high-order interpolations)

• The quadrature points coincide with the element nodes (closed
rule integration) à This can lead to aliasing effects due to the
reduced order integration of closed rule quadrature.

• The skew-symmetric convective operator split detailed by Kennedy
et al. [1] is employed, which counters undesired aliasing effects.

[1] C. A. Kennedy and A. Gruber, “Reduced aliasing formulations of the convective terms within the Navier-Stokes equations for a compressible 
fluid”, Journal of Computational Physics, vol. 227, no. 3, pp. 1676–1700, 2008.



3. Numerical model
compressible flow

• We split the convective terms of momentum using the cubic kinetic energy preserving splitting:

• We split the convective terms of mass using the quadratic splitting:

• In the case of the energy equation, we do the following modification:

and then we apply cubic split to the and independently.
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3. Numerical model
compressible flow

• Stabilisation using entropy viscosity concepts:



3. Numerical model
compressible flow

• Time integration using Runge-Kutta:



3. Numerical model
WMLES

Exchange plane 

(LES data)

Boundary condition imposition

(wall model data)

First steps:
• Only algebraic wall models considered
• Two different strategies for the exchange

location (interface between LES and the wall
model):

1. At a given position
2. Just at the interface of the first off wall 

element
• After testing strategy 2 is preferred
• Validations on benchmark cases
• Next steps are implementation of velocity 

transformations functions, and testing of NEQ 
wall models.



3. Numerical model
WMLES

What we would like in CEEC
• To replace the analytical wall model by a data-driven one based on RL
• Possible advantages:

1. Introduce numerical errors on the model optimisation
2. No need of high-fidelity data sets to do the training

• Bottlenecks:
1. Really intensive from the computational point of view
2. Not available workflows for RL at very large scale

• As a first step, a simpler flow control problem will be tested to 
demonstrate the workflow.



4. Code validation
Channel flow (𝑅𝑒; = 950 & Ma = 0,1) , compressible

P = 8
tw 0.0025879371628599007
theory tw 0.002589595812175917
err tw % 0.06405050966708589
utau 0.050871771768436574
Re_tau 949.6957113466683
Vreman SGS



4. Code validation
Windsor body, compressible, p4 and WMLES+Vreman



4. Code validation

• Two meshes considered based on unstructured hexaedra (p4):
• Coarse: 13 M DOF
• Fine: 150 M DOF

• Vreman SGS model used
• Equilbrium wal model (exchange location at off-wall node 3) 

Windsor body, compressible, p4 and WMLES+Vreman



4. Code validation
Windsor body, compressible, p4 and WMLES+Vreman

Lift Drag

Exp. From AUTOCFD3 -0.0382 0.3298

Present-coarse -0.0552 0.3485

Present-fine -0.0983 0.3247



4. Code validation
CRM HL Case1, compressible, 150M DOF p2 and WMLES+Vreman

https://hiliftpw.larc.nasa.gov/Workshop5/Documents/HLPW5_Test_Cases_v1.7.pdf



4. Code validation
CRM HL Case1, compressible, 150M DOF p2 and WMLES+Vreman

https://hiliftpw.larc.nasa.gov/Workshop5/Documents/HLPW5_Test_Cases_v1.7.pdf

• Very early
• Turbulence is 

developping 
on the wing

• Where is our 
BIG GPU 
machine!? J



4. Code validation
Early dissemination

• Paper submitted to: Computer Physics Communications
• First reviews  available , is positive, we expect to have the paper in the 

upcoming months. 
• Focus on the main kernels' performance on GPU vs CPU:

• Times in (ms)
• p3 elements
• Single-precision runs using CUDA managed memory
• Explicit RK4 time-advance scheme
• MN4 reference: 1.68s/step (48 cores, 85**3 mesh)



4. Code validation
Early dissemination
• Externals users are already playing SOD2D: UPC, 

KTH and Agronne are the most notable.
• First examples of external applications:



5. Scalability analysis



5. Scalability analysis



6. ML integration

B. Font, F. Alcantara-Avia, J. Rabault., R. Vinuesa, O. Lehmkuhl (2024) Active flow control of a turbulent 
separation bubble through deep reinforcement learning, Journal of Physics: Conference Series

• State consists of a set of velocity probes within 
the bubble and surroundings

• Reward: wall shear stress as a proxy for recircu-
lation length

• Action: Instantaneous zero-net-mass-flux
‒ control half of the actuators (ρv), impose opposite 

(-ρv) on the other half *

• Multi-environment
‒ Multiple simulations run in parallel that share the 

controlling agent (RL model)

• Optimal control
‒ Action sampled from an optimal distribution that 

maximizes the reward
‒ Control signal can contain multiple frequencies

state

reward

action

agentenvironment

trajectory (or episode)

General training approach:
1. Collect trajectory via noisy-sampled actions (exploration)
2. Optimize agents weights to maximize accumulated reward in time
3. Check agent performance with deterministic action (most probable,    )
4. Repeat  



6. ML integration

B. Font, F. Alcantara-Avia, J. Rabault., R. Vinuesa, O. Lehmkuhl (2024) Active flow control of a turbulent 
separation bubble through deep reinforcement learning, Journal of Physics: Conference Series

• Multiple parallel simulations interacting with the RL model
‒ Accelerated training

• Execution scheme that fills both GPUs and CPUs
‒ RL model trains on the CPU while CFD simulation runs on 

GPUs

• In-memory Redis database
‒ Measured minimal communication overhead

• RL control strategy
1. Environment sends state and reward to the agent
2. Agent predicts actions and sends them to the environment
3. Environment applies actions and proceeds to next time step



6. ML integration

B. Font, F. Alcantara-Avia, J. Rabault., R. Vinuesa, O. Lehmkuhl (2024) Active flow control of a turbulent 
separation bubble through deep reinforcement learning, Journal of Physics: Conference Series

SmartSim SmartRedis

• Python library to create databases (DBs) and 
managing workloads in HPC environments.

• Allows linking HPC applications with ML models 
written in Python.

• DB can be located in a single node, distributed 
across nodes, or fully duplicated across nodes.

• DB clients for different programming languages 
(Fortran, Python, C/C++) with consistent API.

• Recently updated to be compilable with NVIDIA 
HPC toolkit (required to link with apps compiled 
by nvhpc, like SOD2D).

• Read/write ”tensors” (named arrays) into DB.

• Allows syncronization across programs by waiting 
on arrays to be created into the DB.

• Allows the freedom to write data from each rank 
of each simulation (one client per rank), or gather 
data and then write it from a single rank (one 
client per MPI communicator).

https://www.craylabs.org/docs/overview.html



6. ML integration

B. Font, F. Alcantara-Avia, J. Rabault., R. Vinuesa, O. Lehmkuhl (2024) Active flow control of a turbulent 
separation bubble through deep reinforcement learning, Journal of Physics: Conference Series

CPU
SmartSOD2D

GPU node

SOD2D

Framework management using SmartSim
Two different ways to run the framework in a cluster

Single SLURM 
allocation

Different SLURM 
allocations

GPU node

SOD2D

CPU node

SmartSOD2D
+
DB

GPU node

SOD2D

• CPU node running 
SmartSOD2D.

• A new SLURM 
allocation is 
requested for every 
new batch of 
parallel SOD2D 
simulations.

• SmartSOD2D (Python) and the 
SOD2D (Fortran) do not share 
the same module environment.
[setup in ALVIS]

sbatch SOD2D_job.sh

• SmartSOD2D (Python) and 
SOD2D (Fortran) share the 
same module environment, so 
modules need to be 
compatible.
[setup in Power9]

sbatch job.sh

GPU node

SOD2D

GPU node

SOD2D
GPU node

SOD2D

• A single allocation is
requested.

• SmartSOD2D and the DB
are pinned on the CPU
part of a GPU node.

• SOD2D simulations
run on all GPUs.

sbatch SmartSOD2D_job.sh



6. ML integration

B. Font, F. Alcantara-Avia, J. Rabault., R. Vinuesa, O. Lehmkuhl (2024) Active flow control of a turbulent 
separation bubble through deep reinforcement learning, Journal of Physics: Conference Series

Single SLURM 
allocation [Power9]

Different SLURM 
allocations [Alvis]

#SBATCH --ntasks=8
#SBATCH --cpus-per-task=40
#SBATCH --gres=gpu:4
. all_modules.sh
python train.py

sbatch job.sh

mpirun –x SSDB=<IP-address:port> \
-n 1 sod2d --args1 :
-n 1 sod2d --args2 : …
-n 1 sod2d --args8

SmartSim runs: $

#SBATCH -C NOGPU -n 1
. smartsod2d_modules.sh
python train.py

sbatch SmartSOD2D_job.sh

#SBATCH --ntasks=8
#SBATCH --gpus-per-node=A100:4
. sod2d_modules.sh

mpirun –x SSDB=<IP-address:port> \
-n 1 sod2d --args1 :
-n 1 sod2d --args2 : …
-n 1 sod2d --args8

SmartSim runs: sbatch SOD2D_job.sh

(1 GPU per SOD2D simulation in these cases)



6. ML integration

B. Font, F. Alcantara-Avia, J. Rabault., R. Vinuesa, O. Lehmkuhl (2024) Active flow control of a turbulent 
separation bubble through deep reinforcement learning, Journal of Physics: Conference Series

Distributing simulations across available resources

Multiple-Program Multiple-Data 
(MPMD)

• The MPMD model distributes the requires MPI processes across the available 
resources (GPUs or CPUs).

• The MPI communicator is split within SOD2D, and each simulation gets its 
own ID (colouring) à Useful when reading/writing data into the DB.

• The global communicator across simulations world_comm is not used, only 
the local simulation communicator app_comm.

• Maybe use pycompss to handle processes and distribute workloads in the near 
future!



6. ML integration

B. Font, F. Alcantara-Avia, J. Rabault., R. Vinuesa, O. Lehmkuhl (2024) Active flow control of a turbulent 
separation bubble through deep reinforcement learning, Journal of Physics: Conference Series



6. ML integration

B. Font, F. Alcantara-Avia, J. Rabault., R. Vinuesa, O. Lehmkuhl (2024) Active flow control of a turbulent 
separation bubble through deep reinforcement learning, Journal of Physics: Conference Series



7. Conclusions

1. The present work has assessed and analysed the parallel performance of a new Continuous Galerkin 
High-Order Spectral Element Code aimed to solve simulations of turbulent compressible in the 
context of the CEEC project. 

2. The obtained preliminary results are very promising: the code presents very good scalability
• for both strong and weak speed-ups.

3. Validation efforts on-going however good results observed so far in a relevant benchmark cases.

4. First efforts on integration of ML algorithms promising

To wrap up



Thank you!

Any questions?

oriol.lehmkuhl@bsc.es


