

HPC workflows for scientific applications

Rosa M Badia (BSC)

Innovative HPC workflows for industry
Barcelona Supercomputing Center - 10th January 2024

Agenda (I)

9:00 - 9:30	Arrival and registration	
9:30 – 10:00	eFlows4HPC project overview	Rosa M Badia (BSC)
10:00 - 10:30	Demo about HPCWaaS	Jorge Ejarque(BSC)
10:30 – 11:00	Coffee break	
11:00 – 11:30	Presentation about provenance with PyCOMPSs	Raül Sirvent (BSC)
11:30 – 12:00	Services for industry and academia from the EuroCC network of Competence Centres in HPC	Oriol Pineda (BSC) Carlos Teijeiro (NCC Netherlands)
12:00 – 12:30	HPC-enabling technologies for decarbonization of the power and transportation sectors: the Center of Excellence in Combustion	Daniel Mira (BSC)
12:30 - 13:10	Distributed SKA science-driven workflows at extreme scales: lessons from SKA precursors/pathfinders and next SKA challenges	Susana Sanchez (IAA) Damien Gratadour (CNRS) Jean Pierre Vilotte (CNRS-INSU)
13:10 - 14:00	Lunch break	

Agenda (II)

14:00 - 14:30	Bridging AI and HPC in the Center of Excellence RAISE	Andreas Lintermann (Juelich)
14:30 – 15:00	Workflow Developments in EXCELLERAT P2 for the European HPC Strategy in Engineering	Gregor Weiß (HLRS)
15:00 – 15:30	Towards a framework to integrating CFD and ML in heterogeneous supercomputers	Oriol Lehmkuhl (BSC)
15:30 – 16:00	Discussion	
16:00 - 16:30	Conclusions	Rosa M. Badia (BSC)

Visitors

- Please always wear your credentials
 visible during your stay at the BSC –
 Repsol building.
- Visitors cannot be unattended and should be with BSC staff during their stay.
- Remember to return your credential
 in the plastic baskets next to
 reception when leaving the building.

WIFI

Username:

guest100026

Password:

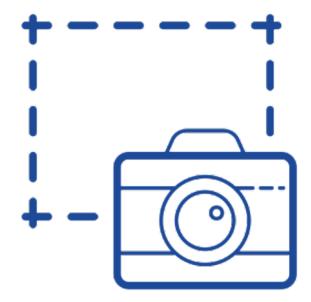
@aNB1\$Om

Logistics: WC and catering

WC

When going out of the auditorium room, please **turn left**, open glass door and you will see the WC on your right front side

Catering


Due to the weather forecast, we will have our breaks indoors:

- Coffee break: in front of the WCs, outside the auditorium turning left
- Lunch break: foyer Torre Girona

Photos

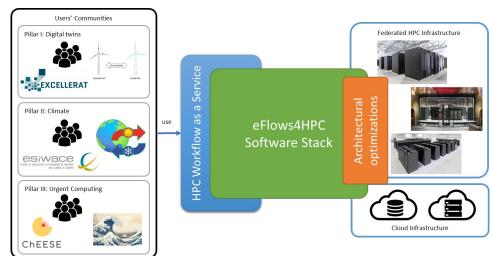
 For project dissemination purposes, photos will be taken during the event to appear on eFlows4HPC and BSC social media accounts and websites and project reports.

7 HPC workflows for scientific applications

EFLOWS4HPC OVERVIEW

Complex workflows and complex infrastructures

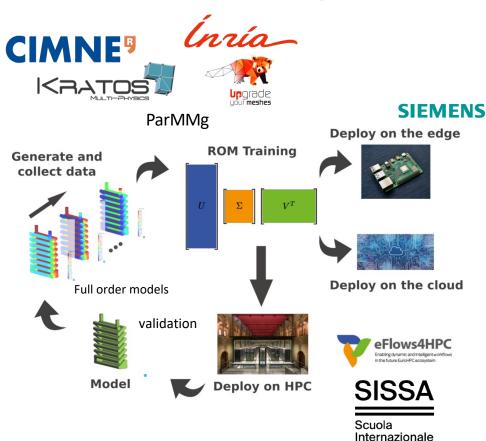
- EuroHPC aims at developing a World Class Supercomputing Ecosystem in Europe
 - Procuring and deploying pre-exascale and petascale systems in Europe
- These systems will be capable of running large and complex applications
- Applications demand the composition of HPC, artificial intelligence and data analytics
- The development, installation, execution and of workflows is manual and error prone:
 - New tools and methodologies are needed



9 HPC workflows for scientific applications

eFlows4HPC in a nutshell

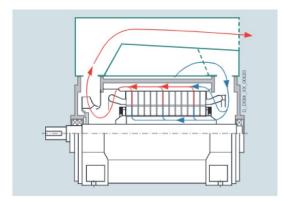
- Software tools stack that makes easier the development and management of complex workflows:
 - Combine different aspects
 - HPC, AI, data analytics
 - Reactive and dynamic workflows
 - Autonomous workflow steering
 - Full lifecycle management
 - Not just execution
 - Data logistics and Deployment
- HPC Workflows as a Service:
 - Mechanisms to make easier the use and reuse of HPC by wider communities



- Architectural Optimizations:
 - Selected HPC Al Kernels Optimized for GPUs, FPGA, EPI
- Validation Pillar's
 - End-user workflows linked to CoEs

10 HPC workflows for scientific applications

Pillar I: Manufacturing

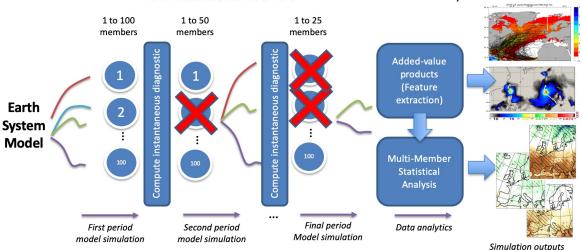


Superiore di

Studi Avanzati

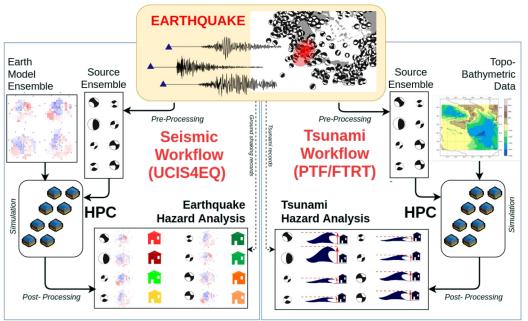
Pillar I focuses on the construction of DigitalTwins for the prototyping of complex manufactured objects:

- Integrating state-of-the-art adaptive solvers with machine learning and data-mining
- Contributing to the Industry 4.0 vision


Pillar II: Climate

Data Analytics

Dynamic (Al-assisted) workflow



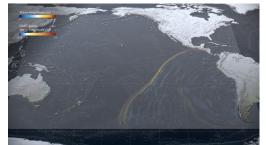
HPDA & ML/DL

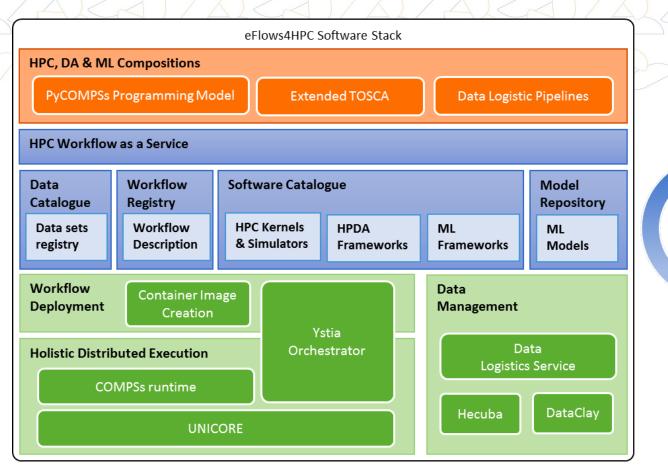
- Perform climate predictions: temperature, precipitation or wind speed
- Al-assisted pruning of the ESM workflow
 - Study of Tropical Cyclones (TC) in the North Pacific, with in-situ analytics

Pillar III: Urgent computing for natural hazards

Pillar III explores the modelling of natural catastrophes:

- tsunamis shortly after such an event is recorded
- Use of AI to estimate intensity maps
- Use of DA and AI tools to enhance event diagnostics
- Areas: Mediterranean basin, Mexico, Iceland and Chile




Tsunami-HySEA GPU-based code

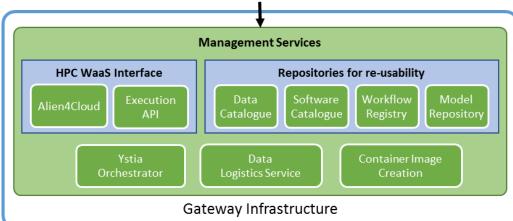
ETH zürich

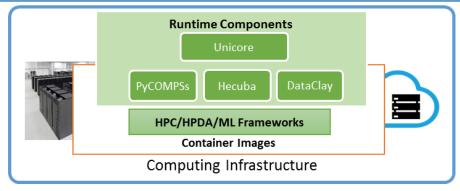
Dynamic Workflow Definition

Workflow Accessibility/ Re-usability

> Efficient Distributed Execution

Software stack deployment

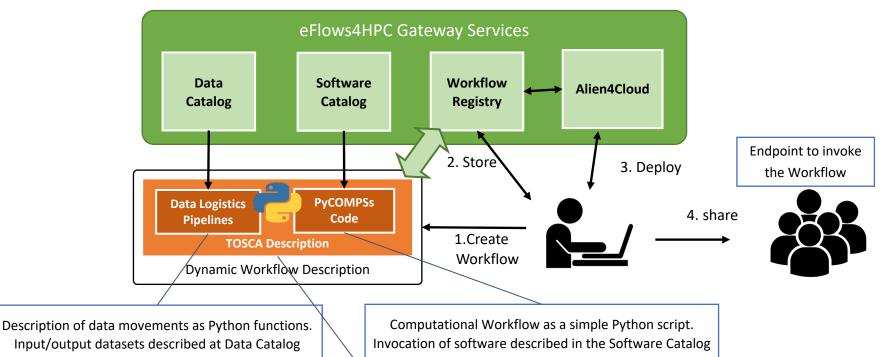



Gateway services

- Components deployed outside the HPC infrastructure.
- Managing external interactions and workflow lifecycle

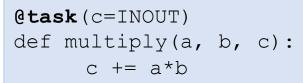
HPC and runtime Components

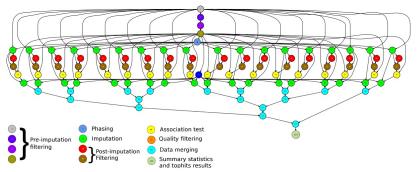
 Deployed inside the HPC infrastructure to manage the workflow execution



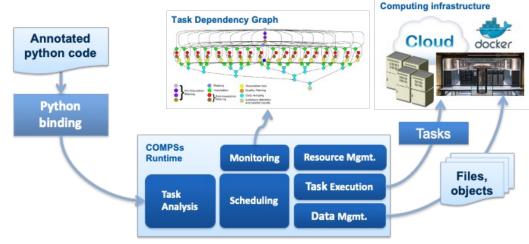
15 HPC workflows for scientific applications 10/01/2024

Workflow development overview

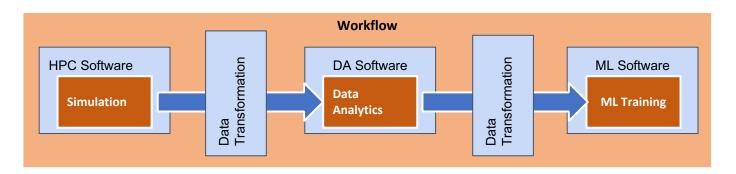

Topology of the components involved in the workflow lifecycle and their relationship.


Main element: Workflows in PyCOMPSs

- Sequential programming, parallel execution
- General purpose programming language + annotations/hints
 - To identify tasks and directionality of data
- Builds a task graph at runtime that express potential concurrency
- Tasks can be sequential and parallel (threaded or MPI)
- Offers to applications the illusion of a shared memory in a distributed system
 - The application can address larger data than storage space: support for Big Data apps
- Agnostic of computing platform
 - Enabled by the runtime for clusters, clouds and container managed clusters



PyCOMPSs features and runtime



- Support for tasks' constraints support for heterogeneous infrastructure
- Support for tasks' faults and tasks' exceptions
 - Enlarges the dynamicity of the type of workflows that we support
- Streamed data
 - ... and many others
- Runtime deployed as a distributed master-worker
- All data scheduling decisions and data transfers are performed by the runtime
- Support for elasticity

Interfaces to integrate HPC/DA/ML

- Goal:
 - Reduce the required glue code to invoke multiple complex software steps
 - Developer can focus in the functionality, not in the integration
 - Enables reusability
- Two paradigms:
 - Software invocation
 - Data transformations

```
#workflow steps defined as tasks
@data_transformation (input_data, transformation description)
@software (invocation description)
def data_analytics (input_data, result):
    pass

#workflow body
simulation (input_cfg, sim_out)
data_analytics (sim_out, analysis_result)
ml_training (analysis_result, ml_model)
```

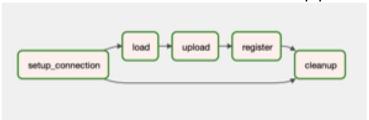
Data Catalogue and Data Logistics Service

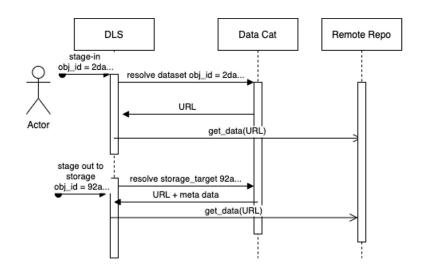
Data Catalogue:

- Lists datasets used and created by the workflow according to FAIR principles
- Provides metadata to make data movement pipelines more generic

Data Pipelines:

- Formalization of data movements for transparency and reusability
- Stage-in/out, image transfer

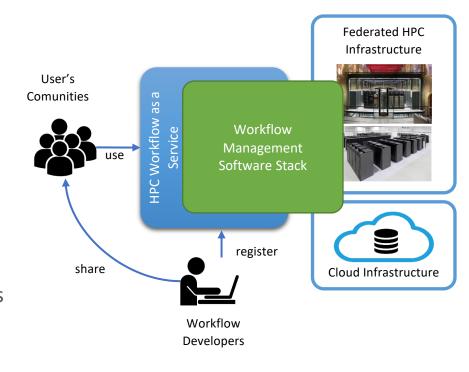

Data Logistics Services (DLS):


Performs the execution of data pipelines at deployment and execution time

Production Ready Services:

- https://datacatalogue.eflows4hpc.eu
- https://datalogistics.eflows4hpc.eu/

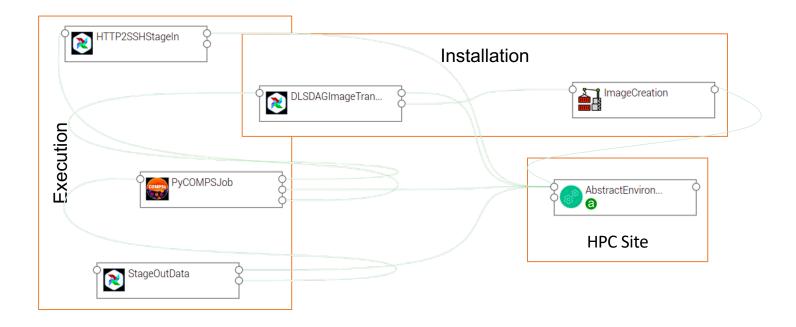
Data pipeline



20 HPC workflows for scientific applications

Top-level workflows approach

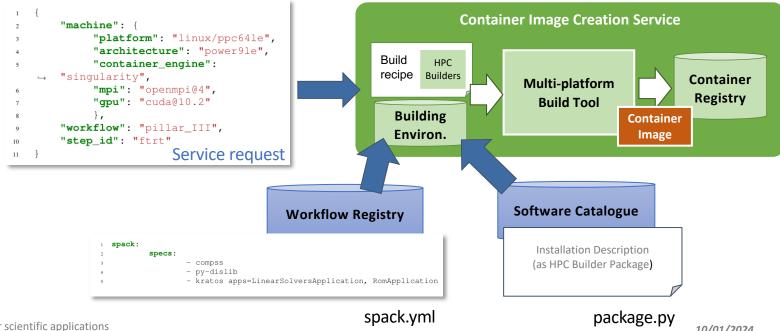
- Requires a description for workflow lifecycle management
 - TOSCA:
 - Model to describe cloud application topologies and its lifecycle orchestration
- Interface for deploying and running the workflows
 - HPC Workflows as a Service (HPCWaaS):
 - Deployment based on containers
 - Execution: HPCWaaS API



21 HPC workflows for scientific applications 10/01/2024

TOSCA Modelization

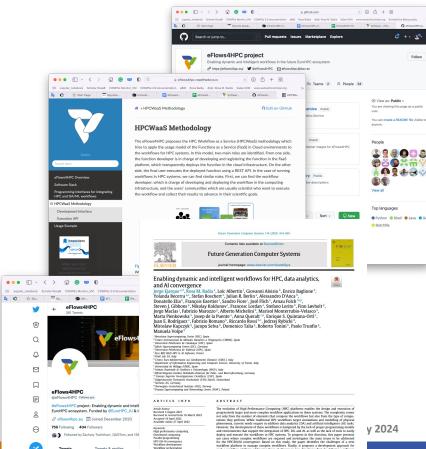
Topology of the different components involved in the Workflow lifecycle management


22 HPC workflows for scientific applications 10/01/2024

HPC Ready Containers

Methodology to allow the creation containers for specific HPC system

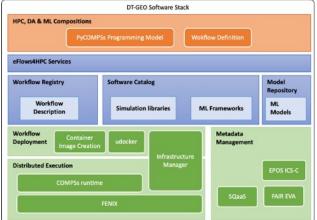
Workflow step + target system



Project main achievements

- Requirements and software architecture. Reviewed at beginning of second iteration
- Definition and implementation of abstractions to support the integration of different stack components
- Development of a step-by-step example.
- Design and implementation of the HPCWaaS API
- Design and implementation of project services: Data Catalogue, Workflow Registry, Software catalogue
- Design and implementation of two versions of Pillars' workflows.
- Two releases of project software and documentation available
- Set of internal trainings about software stack components and HPCWaaS, including an ICS-HPC tutorial
- Good visibility: articles, keynote presentations, media

https://eflows4hpc.eu/software/



Adoption of eFlows4HPC tools in other projects

DT-GEO: prototype for a digital twin on geophysical extremes

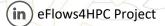
CAELESTIS: simulation ecosystem of next generation aircraft structures

- CAELESTIS

CEEC: Center of Excellence for Exascale CFD

25 HPC workflows for scientific applications 10/01/2024

Project partners



www.eFlows4HPC.eu

