Distributed SKA science-dven workflows at extreme
scales : lessons from SKA precursors/pathfinders and

next SKA challenges
I’.@vdaeggrire S M)
FRANCE

PSL*] SQUARE KILOMETRE ARRAY




SKAO: the largest (radio-)telescope

1 observatory: 2 telescopes (Australia & South Africa)
+ Headquarters (U.K.)

A giant software observatory, streaming data globally
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SKAO: unraveling the unknown

SKA- Key Science Drivers:
The history of the Universe
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Cyber Continuum for SKA

Hierarchical architecture: system of systems
o Large amount of distributed & heterogeneous sensors

o Real-time stream engine for raw data convergence
o State-of-the-art datacenter for processing, storage and distribution
o Distributed network of national HPC facilities for content delivery to the users
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Edge-to-HPC computing for SKA

Collect, Converge and Reduce data streams from distributed sensors
o In situ & Online data processing with centralized HPC systems

o Reduce continuous 10 Tb/s stream to 350 PB/year of data products

o Affordable / Adaptable / Frugal / Resilient

Duplicated in two host countries (with centralized control in UK)
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HPC-to-Cloud computing for SKA

Federate resources to analyze distributed data

o Rely on external resources (regional centers), possibly at continental level
o Federate: compute, data logistics, storage, wide-area workflows

o Increasing use of Al for many science programs

o Access patterns, provenance, resources accounting, power management
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SKA computing challenges: imaging
Typical acquisition and processing pipeline

« Combine pairs of signals 3¢ source
to create “visibilities”
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SKA computing challenges: imaging

Typical acquisition and processing pipeline

« Combine pairs of signals
to create “visibilities™  receiver
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gﬁa Cyber-infrastructures for SKA I.@
SKA computing challenges: imaging

Typical acquisition and processing pipeline
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SKA computing challenges: imaging

Imaging:

e Earth rotation synthesis:
increasing frequency
plane coverage over
extended observation
time

e Both iterative
(deconvolution) and
incremental (observing
time)

e Trade-off between

online processing (buffer
based) and batch
processing (storage)

North

(a) VLA Antenna positions

(b) uv coverage - Snapshot
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Challenges across the continuum

Facilities operations :' Centralized and / or Distributed Control

e Multiscale system of systems —
e Intercontinental control strategies

o Including “owned” and “shared” facilities
e x10 years typical lifetime

o Continuous integration of emerging & non-conventional technologies
o Preserve operations

Facilities management
e Limited power envelope
o Access to power grid Centralized and / or Distributed Power Management
e Cost containment
o Mostly relying on taxpayers money
e Optimized operations
o Dynamical cyberinfrastructure, including reconfigurable HPC

11
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Existing implementations (l)

KillMS + DDfacet

Developed at OdP (in collab. with others, incl. Atos/Eviden)
Proven solution: e.g. LOTSS survey / MeerKAT
Direction dependent calibrations & deconvolution. Probably the most
advanced and accurate pipeline
Parallelization effort: static scheduling, recent results from N. Monnier PhD
(collab. OdP + L2S + Atos/Eviden)
McMn parallelization, up to 24 nodes:

® meeting specs for “small” LOFAR dataset: 1h observation reduced in less than 1h
Needs to scale up:

® MeerKAT extension & LOFAR VLBI & SKA-Low/Mid require

® x40 in number of visibilities

® x25in final image size

® Significant impact
Today: pure Python software, incl. ConcurrentFutures & MPI for
parallelization. https://github.com/saopicc/DDFacet

12


https://github.com/saopicc/DDFacet

Time in sec

Existing implementations (l)

KillIMS + DDfacet: current parallelization
strategy
e From N. Monnier PhD

e Relying on static scheduling &
static dispatch of “measurement
sets”

e Deconvolution on single node /
single core
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Existing implementations (ll)

Stimela + Dask + Kubernauts

Developed at SARAO (South Africa, MeerKAT team: RATT)
Proven solution: new MeerKAT baseline solution
Designed to run in the cloud: deployability + portability as key requirements
Still missing features (direction dependent effects), but very versatile (concept
of “pipeline framework™ to be adaptable to varying observational scenario)
Not optimized for performance:

® Relying on Dask + “Cloud toolbox” (e.g. Kubernetes, tested on AWS, etc ...)

e Significant work done to handle (& distribute) “measurements sets”: dask-ms

® https://github.com/ratt-ru/dask-ms
e South African team very active & happy to collaborate

QuartiCal (J. Kenyon) https://github.com/ratt-ru/QuartiCal: calibration suite

pfb-clean (L. Bester) https://qgithub.com/ratt-ru/pfb-clean: imager

tricolour (B. Hugo, S. Perkins) https://github.com/ratt-ru/tricolour: flagger

xova (S. Perkins) https://github.com/ratt-ru/xova: visibility data averaging, including BDA

crystalball (S. Perkins) https://qithub.com/caracal-pipeline/crystalball: DFT-based model predict
shadeMS (O. Smirnov, |. Heywood) htips://github.com/ratt-ru/shadeMS: plotting & visualization



https://github.com/ratt-ru/dask-ms
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Towards a SKA demonstrator
Demonstrating the SKA online workflow at full scale
e Addressing Edge-to-HPC component
e Going beyond Gordon Bell finalist study from Wang et al. 2020
e From data generation to Scientific Data Products
¢ Including frugality and resilience as sustainability indicators
l \\\ S:a?:e :>Remote Delivery |:> *
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Supporting initiatives

ECLAT: Laboratoire Commun CNRS - Inria — Eviden - Obs. Cote d’Azur &
Obs. Paris (head: D. Gratadour)

e Support structure for French contribution to SKA

e In kind contributions from partners, incl. INSU, INS2I, INSIS, multiple Inria
teams together with Atos R&D and business dev.

e Truly multi-disciplinary and trans-sectoral collaboration
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The SKA will use enough
optical fiber to wrap twice
around the Earth!

\\

The SKA will be so
sensitive that it will
be able to detect
an-airport radar on
a planet tens of
light years away.




