# Distributed SKA science-driven workflows at extreme scales: lessons from SKA precursors/pathfinders and next SKA challenges

Susana Sánchez Expósito<sup>1</sup>, Damien Gratadour<sup>2</sup>, Jean-Pierre Vilotte<sup>3</sup>

eFlows4HPC workshop: HPC Workflows for Scientific Applications

Barcelona Supercomputing Centre, 10th January 2024

(1) Instituto de Astrofísica de Andalucia – CSIC, (2) Observatoire de Paris, CNRS, (3) Institut de Physique du Globe de Paris, CNRS

#### Outline (1st part of the talk)

- The SKA Observatory
- The SKA Regional Centres (SRCs) and the SRC Network
- Challenges associated with the workflow execution on the SRC Network
- Workflows in the pre-SKA era: some examples.



#### The SKA Observatory

INSTITUTO DE ASTROFÍSICA DE ANDALLICÍA

#### **Open key questions in Astrophysics, Astrobiology and Fundamental Physics**

- Formation of the 1st galaxies in a dark Universe dominated by atomic gas
- Evolution of the atomic gas and star formation till the current epoch
- Strong Field Tests of Gravity Using Black Holes
- Active Galactic Nuclei and the Galactic Centre

**CSIC** 

• Extrasolar planets (proto-planetary disks, biomarkers)



SKAO

## The SKA Observatory



SIC

Spain joined the SKA

Observatory as the 9th

Member country

April 2023

- 2013 Design consortia formed
- 2021 Construction approval
- 2024 Commissioning
- 2026 Science verification
- 2029 End of construction

#### IAA–CSIC & SKA project:

- Coordinator of the Spanish participation in the SKA since 2011
- IAA SO programme supporting the development of the Spanish SKA Regional Centre prototype since 2019
- Participation in 3 Design consortia
  - $\rightarrow$  Collab. With the BSC in the Science Data Processor consortium
- 16 IAA members participating in 7 out of the 14 SKA Science Working Groups

AMIGA group: https://amiga.iaa.csic.es/

#### The SKA Regional Centre Network (SRCNet)



### The SKA Regional Centre Network (SRCNet)

#### **SRC Capabilities Blue print:**



Credit: J. Salgado (SRCNet Architect)

#### The SRCs will

- host the SKA Science Archive
- provide access to
  - SKA data products
  - computing resources
  - scientific tools
- provide user support

SRCs as the core of the SKA Science



#### The SKA Regional Centre Network (SRCNet)

#### An ecosystem of interoperable data and services distributed in the SRCNet nodes



- Users can access data and services, irrespective of their location or user nationality
- Same user credential to get access to data & services
- SRCNet nodes will implement common features so users are able to connect to different nodes in a transparent way
- SKA data location will be determined to optimise access and minimise data redistribution



Multiple nodes locally resourced and staffed, independents and **heterogenous** How to bring the compute to the data and offer a seamless user experience ?

□ Heterogenous data storage solutions → Approach based on Data Lake technology (need to align it with the diversity of datasets)

**Cosmic dawn** (First stars & Galaxies)

**Cosmology** (Dark matter, Large-scale structures)

Galaxy evolution (gas content & new stars)

**Cosmic magnetism** (origin & evolution)

**Fundamental physics** (gravitational waves & compact objects)

**Cradle of life** (Planets, Molecules, SETI)





Multiple nodes locally resourced and staffed, independents and **heterogenous** How to bring the compute to the data and offer a seamless user experience ?

- □ Heterogenous data storage solutions → Approach based on Data Lake technology (need to align it with the diversity of datasets)
- □ Heterogenous computing framework/services → Portability of workflows → Approach based on container technology (enough?, "Abstraction layer with portable programming models")



Multiple nodes locally resourced and staffed, independents and **heterogenous** How to bring the compute to the data and offer a seamless user experience ?

- □ Heterogenous data storage solutions → Approach based on Data Lake technology (need to align it with the diversity of datasets)
- □ Heterogenous computing framework/services → Portability of workflows → Approach based on container technology (enough?, "Abstraction layer with portable programming models")
- Nodes have "non-uniform policies in security, access and allocation of resources under the administration of local SRC nodes."



Multiple nodes locally resourced and staffed, independents and **heterogenous** How to bring the compute to the data and offer a seamless user experience ?

- □ Heterogenous data storage solutions → Approach based on Data Lake technology (need to align it with the diversity of datasets)
- □ Heterogenous computing framework/services → Portability of workflows → Approach based on container technology (enough?, "Abstraction layer with portable programming models")
- Nodes have "non-uniform policies in security, access and allocation of resources under the administration of local SRC nodes."
- □ Nodes will have a different set of analytical tools / computing capacities
  - → "Centralised intelligent resource management: appropriate resource allocation knowing the behaviour/request of workflows, policies, topology and current status of the systems."



 $\Box$  Centralised intelligent resource management  $\rightarrow$  IVOA Execution Planner

Define protocols to identify where to execute a particular workflow

"IVOA Execution Planner" https://wiki.ivoa.net/internal/IVOA/Execution Planner20211104/IVOA-EP-note.pdf



A A ANDALUCÍA

EXCELENCIA SEVERO OCHOA



Figure 3. Use case: a user searches for software in a repository, then, having a software description, that in the simplest case is a unique identifier, searches in a registry a suitable facility where run the software. At the end he is able to run the software.

Modeling software solutions and computation facilities for FAIR access. S. Bertocco. https://arxiv.org/pdf/2302.11447.pdf

#### Complexity and Heterogeneity of the SKA workflows (HPC, HDA, AI, Visualisation)

Diverse patterns of when, where and how data are accessed, transformed, analysed and intermediate results managed

 $\rightarrow$  "Control and flexibility of data and compute placement in run time"

□ "Workflows portability and composability"

□ Provenance System: "Make available provenance streams captured by execution of workflows"

 $\rightarrow$  To support FAIR principles

 $\rightarrow$  And the "Centralised intelligent resource management"

#### SRCNet will embrace FAIR principles<sup>1</sup>

→ Data processed within the SRC Network will automatically propagate all metadata and provenance information in support of FAIR principles.

<sup>1</sup> SRCNet Vision and principles by the SRC Steering Committee



#### Pathfinder telescopes Precursor telescope

#### Low-Frequency Array (LOFAR)



Expanded Very Large Array (EVLA)



MeerKAT





Web services as Building Blocks for Science Gateways in Astrophysics, Sanchez-Exposito+ <u>http://link.springer.com/article/10.1007/s10723-016-9382-y</u> 2016 Calibration of LOFAR data on the cloud, Sabater+. <u>https://doi.org/10.1016/j.ascom.2017.04.001</u> 2017

- Size of a single observation: 3-4 TBs
- Processing of chunks of data in parallel
  - $\rightarrow$  Executing 3-steps workflow for each chunk
  - $\rightarrow$  1<sup>st</sup> step only uses 1 core









A case study of the Hi content of Hickson Compact Group16. M.G. Jones+ https://doi.org/10.1051/0004-6361/201936349, 2019

> Enabling end-to-end reproducibility of the scientific studies  $\rightarrow$  from the initial data processing to the plots/figures of the paper



"Accelerated evolution in the densest groups of galaxies: MeerKAT imaging of the missing HI" (Observing proposal, Verdes-Montenegro+)

- 6 targets (Hickson Compact Groups)
- Raw data size: ~ 50TB (~9TB each target)
  - ightarrow Selecting sub-datasets in origin to minimise data transfer
- Processing target by target (CARACAL)
  - 100 GB input data set
  - Intermediate data: 5x input data (~500GB)

CSIC

• Source finding (SoFIA)

A INSTITUTO DE ASTROFÍSICA DE ANDALLICÍA

• Final results: ~10GB





Credit: Gyula I. G. Jozsa & Sphesihle Makhathini

https://indico.in2p3.fr/event/21698/contributions/84474/

#### SKA Data Challenge 2 (2021) Multifrequency source finding and characterization of HI emitting galaxies. define chunks split\_subcube split subcube split subcube split subcube split\_subcube idx: 7 split\_subcube split\_subcube split subcube split subcube idx: 0 idx: 1 idx: 5 idx: 2 idx: 3 idx: 4 idx: 6 idx: 8 run\_sofia run\_sofia run\_sofia run\_sofia run\_sofia run sofia run\_sofia run sofia run sofia sofia2cat sofia2cat sofia2cat sofia2cat sofia2cat sofia2cat sofia2cat sofia2cat sofia2cat SoFiA concatenate catalogs Source Finding Application eliminate duplicates final catalog 35 -28 11 17 23 29 10 16 22 28 34 -29 visualize 33 3 9 15 21 27 Dec. [deg] snake make -30 2 14 32 8 20 26 -31 13 31 1 7 19 25 30 0 12 18 24 6 -32

182

181

180 R.A. [deg] 179

178

#### Solution by HI-Friends team

https://zenodo.org/records/6802188 (Moldon+)

- 1 TB input data set
- Data divided in overlapping chunks
- Chunks processed in parallel
- SoFiA for source finding and characterization
- Final step to eliminate duplicated sources

→ Several runs for tuning SoFiA parameters and get the best results

| Position | User         | Group         | Score    | SKA Science Data Cha<br>https://doi.org/10.1093 | llenge 2: analysis and result<br>/ <mark>mnras/stad1375</mark> , Hartley+ |
|----------|--------------|---------------|----------|-------------------------------------------------|---------------------------------------------------------------------------|
| 1        | minerva      | MINERVA       | 23254.16 | AI/ML (CNN)                                     |                                                                           |
| 2        | forska       | FORSKA-Sweden | 22489.43 | AI/ML (CNN)                                     |                                                                           |
| 3        | sofia        | SoFiA         | 16822.24 | SoFiA                                           | Reproducibility Award                                                     |
| 4        | naoc-tianlai | NAOC-Tianlai  | 14416.02 | Source Finding Application                      | EPFL Bronze                                                               |
| 5        | hi-friends   | HI-FRIENDS    | 13902.62 | Source Finding Application                      | FORSKA-Sweden Silver                                                      |
| 6        | epfl         | EPFL          | 8515.16  | "Joint likelihood" Algorithm                    | <u>I OKSKA-Sweden</u> Silver                                              |
| 7        | spardha      | Spardha       | 5614.59  | Source Finding Application                      | <u>HI-FRIENDS</u> Gold                                                    |
| 8        | starmech     | Starmech      | 2095.65  |                                                 | NAOC-Tianlai Bronze                                                       |
| 9        | jlrat        | JLRAT         | 1079.73  | AI/ML (CNN)                                     | SHAO Bronze                                                               |
| 10       | coin         | Coin          | -1.76    | AI/ML (CNN)                                     | Team SoFiA Silver                                                         |
| 11       | hiraxers     | HIRAXers      | -2.00    | "Peak finding" Algorithm                        |                                                                           |
| 12       | shao         | SHAO          | -471.00  | SExtractor Programme                            |                                                                           |

INSTITUTO DE ASTROFÍSICA DE ANDALUCIA SKAO: A Big Data instrument that will address key questions in Astrophysics, Particle Physics and Astrobiology

 $\rightarrow$  Diversity in scientific use cases

❑ SKAO data will be scientifically analysed in the SRC Network →SRC Network, the access point to the SKAO data

❑ The SRCNet, a network of independent and heterogenous nodes
→ Different storage solutions, computing framework, capacities and policies

#### □ Workflows in the pre-SKA era. Use Case: HI in Galaxies

 $\rightarrow$  Several scientific applications, with different requirements, in the same workflow

- $\rightarrow$ Use of containerisation to improve portability and reusability
- $\rightarrow$ Parallelization provided by the data division in chunks



With the financial support from a) and b):





The grant **CEX2021-001131-S** funded by MCIN/AEI/ 10.13039/501100011033

