
D1.3 Revision of Requirements and
Architecture Design

Version 1.0

Documentation Information

Contract Number 9555558

Project Website www.eFlows4HPC.eu

Contractual
Deadline 31.08.2022

Dissemination Level PU

Nature R

Author Jorge Ejarque (BSC)

Contributors
Rosa M. Badia(BSC), Yolanda Becerra(BSC), Loïc Albertin (Atos), Anna
Queralt (BSC), Domenico Talia (DtoK Lab), Jedrzej Rybicki (FZJ),
Alessandro D’Anca (CMCC), José Flich (UPV)

Reviewer Fabrizio Marozzo (DtoK)

Keywords Requirements, Architecture, workflows

This project has received funding from the European High-Performance Computing
Joint Undertaking (JU) under grant agreement No 955558. The JU receives support
from the European Union’s Horizon 2020 research and innovation programme and
Spain, Germany, France, Italy, Poland, Switzerland, Norway.

DRAFT

1

D1.3 Revision of Requirements and Architecture Design
Version 1.0

Change Log

Version Description Change

0.1 Proposed Table of Contents

0.2 Update of Pillars Requirements

0.3 Update of Architecture Components

0.4 Update of Component interactions

1.0 Update with internal reviewer comments

DRAFT

2

D1.3 Revision of Requirements and Architecture Design
Version 1.0

Table of Contents

1. Executive Summary ... 3

2. Introduction .. 3

3. Revision of the Requirements ... 4

3.1. Requirements from Pillars .. 4

3.2. Requirements from Components ... 7

3.3. Constraints from HPC Centres .. 7

4. Architecture Update ... 10

4.1. Component Updates ... 10

4.1.1. HPC Workflow as a Service (HPCWaaS) .. 10

4.1.2. Workflow Registry (WR) .. 11

4.1.3. Software Catalogue (SC) ... 12

4.1.4. Container Image Creation (CIC) .. 12

4.2. Software Stack deployment .. 13

4.3. Usage and component interactions .. 13

4.3.1. Workflow development .. 15

4.3.2. Credential Management ... 16

4.3.3. Workflow Deployment .. 17

4.3.4. Workflow Execution .. 17

4.4. Requirement fulfilment by architecture components .. 18

5. Conclusions ... 20

6. Acronyms and Abbreviations .. 21

7. References .. 22

DRAFT

3

D1.3 Revision of Requirements and Architecture Design
Version 1.0

1. Executive Summary
This document presents an update of the work performed in WP1 regarding the requirements and
architecture of the eFlows4HPC workflow platform. In the first part of the deliverable, requirements for the
eFlows4HPC platform have been reviewed, checking if they are still valid, if the priority is still correct and
evaluating their status of implementation. Regarding requirements from HPC sites, the survey has been
extended to new HPC centres, which are not part of the project. We have received answers from CSC
(hosting the LUMI supercomputer), HLRS (hosting Hawk and Vulcan supercomputers), IT4I (hosting Karolina
and Barbora supercomputers), CINECA (hosting Marconi supercomputer), EPCC (hosting Archer and Cirrus
supercomputers) and GENCI who has provided answers for the IDRIS’s Jean Zay and the CEA-TGCC’s Joliot-
Curie HPC clusters. The analysis of these answers has produced similar results in terms of requirements
which validates the requirements gathered in the first phase of the project.

The second part of the deliverable updates the eFlows4HPC architecture. First, a new component has been
included in the workflow deployment part which is in charge of creating tailored container images for
specific HPC systems, and other components (HPCWaaS, Software Catalogue and Workflow registry) have
been updated to reflect some implementation decisions taken during the first phase of developments.
Apart from the components update, a deployment diagram has been defined to clarify the different parts
of the infrastructure and where the different components of the software stack are deployed. The main use
cases have been updated, including the credential management and the component interactions have been
updated derived by the aforementioned changes.

2. Introduction
One of the main current barriers for the adoption of HPC is the complexity of developing, deploying and
executing complex workflows in federated HPC environments. New scientific and industrial applications
require to implement workflows that combine traditional HPC simulation and modelling with big data
analytics (DA) and machine learning (ML) algorithms. The integration of these different technologies in a
single workflow increases the complexity of managing its entire life-cycle. Starting from the development
phase, the integration of different HPC, DA and ML workflow phases requires additional programming
efforts, for example by introducing some glue code which deals with the execution and data integration
between the different parts of the workflow. In the deployment phase, users are required to perform
complex software installations in HPC systems which are beyond their technical skills. Therefore, having the
workflows ready for execution in a supercomputer could take large amounts of time and human resources.
If it needs to be replicated for reliability requirements to several clusters, the required time and resources
will increase. Finally, in the execution phase all the different components must be orchestrated in a dynamic
and intelligent way in order to make an efficient use of resources.

The eFlows4HPC project aims at widening the access to HPC to newcomers, and, in general, to simplify the
development, deployment and execution of complex workflows in HPC systems. It proposes to simplify this
process in two ways. From one side, the eFlows4HPC software stack aims at providing the required
functionalities to manage the lifecycle of these kind of complex workflows; from the other side, it
introduces the HPC Workflow as a Service (HPCWaaS) concept, which leverages the software stack to widen
access to HPC by the different communities. This service offering tries to bring the Function as a Service
(FaaS) concept to the HPC environments trying to hide all the complexity of a HPC Workflow execution to
end users. These project outcomes demonstrate, through three application Pillars with high industrial and
social relevance (manufacturing, climate and urgent computing for natural hazards), how the
implementation of forthcoming efficient HPC and data-centric applications can be developed with our
proposed novel workflow technologies.

This document presents the updates in the requirements and the architecture of the eFlows4HPC software
stack and the HPCWaaS concept. Section 3 updates the requirements from the different eFlows4HPC

DRAFT

4

D1.3 Revision of Requirements and Architecture Design
Version 1.0

stakeholders (Pillars, Software components and HPC sites), and Section 4 updates the software stack
architecture including the main usage cases of the HPCWaaS methodology and the relation of the
requirements with the software stack components.

3. Revision of the Requirements
The requirements gathering process for the eFlows4HPC platform was split in three main parts according
to the main stakeholders on the architecture: the project pillars, that provide requirements about
functionalities for implementing, deploying and executing their different workflows; the software
component owners, that provide requirements about how HPC simulators as well as ML/DA frameworks
and other software components of a workflow must be deployed and executed in the computing
infrastructure; and finally, the HPC system administrators that provide the requirements in order to interact
with HPC systems according to their security constraints and usage model.

The next paragraphs provide the update of the requirements gathered in the first period which are still valid
in the second phase of the project and if their priority is still appropriate. Apart from the ID, descriptions
and priority, we have also added a new column about the status of the requirement at M20. The possible
status are: Done, when the requirement has been implemented and validated; Pending to Validate, when
the functionality is already implemented but it is not validated by the pillar workflows; In Progress, when
the implementation of a solution for this requirement is under development; and Pending, when the
implementation is still to be started.

3.1. Requirements from Pillars
The following tables present the summary of the requirements from the different pillars. These tables
contain an identifier (ID) to easily identify the source of the requirement (P1: Pillar 1, P2: Pillar 2, and P3:
Pillar 3), and the name, description and priority assigned by pillar teams, and the status at M20.

Most of the Pillar I requirements with Must priority have been already done. The only Pending requirement
of this category is P1-2 “Storing of hyper-reduced model”. In the first version of the workflow, the hyper-
reduced model is serialised as a JSON file, which can be easily stored and transferred. However, this format
is not very efficient for being loaded in the solver, so this requirement is still open. Regarding the other
requirements with less priority, most of them are In Progress or Pending to Validate, except the P1-4 and
P1-8, about the including clustering models and the ML inference in the workflow, which are still Pending.

Table 1. Summary of requirements from Pillar I

ID Name Description Priority Status
M20

P1-1 Distributed SVD Requires an optimised distributed SVD to analyse large scale data.
This is one of the most computationally intensive steps since such a
matrix will be very large

Must

Done

P1-2 Storing of hyper-
reduced model

Requires storing and transferring the meshes and the trained ML
model needed to reconstruct the hyper-reduced model, together with
the solver executable needed to run it.

Must

Pending to
Validate

P1-3 DNN model Artificial Neural Networks (probably convolutional) to train
autoencoders. This may provide an attractive option to improve the
reduction ratio of the reduced model. Here both training data and the
output to be used in the inference step need to be saved

May

In Progress

P1-4 Clustering model Clustering algorithms as an option to improve the reduction ratio.
Here both training data and the output to be used in the inference
step need to be saved

Should

Pending

DRAFT

5

D1.3 Revision of Requirements and Architecture Design
Version 1.0

P1-5 Persistent storage Requires persistent storage for data to be consumed between the
steps

May In Progress

P1-6 Restart Workflow programming and management have to allow re-start the
ROM computation according to validation results.

Should

Pending to
Validate

P1-7 Workflow
Orchestration

Workflow management is also required through the phases to
coordinate the execution of the different computing steps

Must

Done

P1-8 ML inference Simulation code requires accessing the ML trained model May Pending

P1-9 Deployment Deployment of the model and the required software in the cloud. This
requires carrying around all the data needed to start from scratch a
complete hyper-reduced model.

May In Progress

Regarding Pillar II, most of the requirements identified as Must are done except P2-3, P2-6 and P2-8. In P2-
3, the integration with the workflow manager is already done, but it is not supporting multiple HPC
infrastructures at the same time, so the requirement is not fully completed yet. Regarding P2-6 and P2-8,
the implementation of the functionality is in place but the validation from the pillar’s workflow is not
finished. The only pending requirement in this Pillar is P2-7 which is about the integration of AI models in
the ensemble member pruning. The others are In Progress or Pending to Validate.

Table 2. Summary of requirements from Pillar II

ID Name Description Priority Status
M20

P2-1 Execution
Robustness

Management of fault tolerance during the workflow execution
including checkpoints or retries. For example, during a large
execution if a node fails, the workflow must be able to recover and
continue to the end.

Should In Progress

P2-2 Portability Workflow components should be portable to several HPC
infrastructures.

Should In Progress

P2-3 Integrated workflow
management

Requires the Management of task dependencies, execution of
parallel simulations on different HPC infrastructures, management of
batch jobs (submission, monitoring, cancellation), management of
conditional paths in a transparent way.

Must In Progress

P2-4 Integration with
permanent storage

Results may be stored in long-term storage for archiving purposes,
second use (e.g, downstream services) and/or to satisfy FAIRness
policies.)

May Pending to
Validate

P2-5 Workflow adaptability Capability to easily manage, cancel, replace and add components
invocations in the workflow, for example to start the workflow from
building block n.

Should In Progress

P2-6

Access to
intermediate in-
memory results

The workflow manager should have the capability to retrieve
data/intermediate outputs of the current running members of an
ensemble on execution time directly from memory.

Must Pending to
Validate

P2-7

AI integration for
ensemble member
pruning

Support for applying AI techniques on intermediate data of running
members to compute the members that will be discarded by the ESM
workflow manager at a given step of the simulation.

Should Pending

P2-8 ML/DL capabilities Require the support for training and inference from Neural Network
models as workflow steps.

Must Pending to
validate

P2-9 DA capabilities Support for descriptive analytics (e.g., statistical analysis) exploiting
fast in-memory analysis.

Must Done

P2-10 High-Performance
Computing support

Climate models have to be executed on computing infrastructures
capable of providing a large amount of processing and memory
resources.

Must Done

DRAFT

6

D1.3 Revision of Requirements and Architecture Design
Version 1.0

P2-11 Multi-member
analysis

Support for concurrent execution of sub-workflows starting from
different inputs (configurable) and intercomparison of the sub-
workflows results.

Must Done

P2-12 Usability Easiness to run/manage the workflow and workflow blocks. May In Progress

Regarding Pillar III, none of the requirements are fully done. However, most of them are Pending to be
validated by the pillar workflows. It is due to some parts of the Pillar’s workflows having been implemented
during the first phase of the project. Therefore, the validation of these requirements is still missing.
Regarding the Pending requirements they are: P3-3 about managing data replication, P3.5 about the
integration of the workflow with the infrastructure services, and P3-7 about supporting streaming data
sources.

Table 3. Summary of requirements from Pillar III

ID Name Description Priority Status
M20

P3-1 Urgent computing
access

Priority access to HPC computational resources Must In Progress

P3-2 Data
interoperability

High-performance data transfers between HPC facilities Should Pending to
Validate

P3-3 Data replication Redundancy of data in different external repositories to assure
a high-availability service. Moreover, replication of large data
(e.g. computational meshes) in HPC facilities to avoid time-
consumed transferences. Data redundancy should consider
data replication with data stored at operation.

Must Pending

P3-4 Execution
Robustness

Support for the management of fault tolerance during the
workflow execution including checkpoints or retries. For
example, during a large execution, if a node fails, the workflow
must be able to recover and continue to the end.

Must Pending to
Validate

P3-5 Infrastructure
interoperability

Interoperability between different services (eg. Data Logistics
Service, HPC clusters and microservices-based infrastructure)

Must Pending

P3-6 Portability Workflow components must be portable to several
infrastructures

 May In Progress

P3-7 Streaming Data
Source

Management of streaming data sources in real-time from
external agencies or servers

Must Pending

P3-8 Integrated workflow
manager

Support for the management of task dependencies, execution
of parallel simulations on different HPC infrastructures,
management of batch jobs (submission, monitoring,
cancellation), management of conditional paths, and
coordination of microservices invocations

Must Pending to
Validate

P3-9 Integration with
permanent storage

Support for access to external data repositories (R/W) such as
EUDAT. Support for final storage in long-term storage for
second use and/or to satisfy FAIRness policies

Must Pending to
Validate

P3-10 Inference of
online/offline ML
models

Support to the use of inference from
online and/or offline trained ML models by Earthquake and
Tsunamis emulators as steps in its workflows

Must In Progress

DRAFT

7

D1.3 Revision of Requirements and Architecture Design
Version 1.0

P3-11 Data Analytics
integration

Predictive and prescriptive data analytics to assist some
building blocks in analysis and decision tasks

May In Progress

P3-12 Workflow
malleability

Capability to cancel and add new components invocations at
run-time

Should Pending to
validate

3.2. Requirements from Components
Another important goal of the project is the integration of HPC, DA and ML techniques in complex
workflows for simplifying its deployment and execution, and enabling their reusability. For this reason, the
eFlows4HPC software stack must support the deployment and coordinate the execution of the HPC
software and DA/ML frameworks required by the Pillars’ workflows as well as the eFlows4HPC software
stack components which must also be deployed in the computing infrastructure to manage the workflow
execution and data. The following table provides a summary of the requirements identified in the first phase
of the project, and their status at M20. In this first phase, we have completed all the requirements for
supporting the different types of software invocations (CMP-4, CMP-5 and CMP-6). Regarding the others,
the requirements for supporting HPC optimizations (CMP-1 and CMP-2) are In Progress, and the
requirement for supporting service deployments (CMP-3) is still Pending.

Table 4. Summary of requirements from Components

ID Name Description Priority Status
M20

CMP-1 Access to HPC-
specific
devices

Workflows developed with the eFlows4HPC stack must be able to
access the specific HPC hardware such as High-Performance
networks, accelerators or special CPU vectorial instructions.

Must In Progress

CMP-2 Support
Optimised
kernels

Workflows developed with eFlows4HPC stack must be able to
support the architecture-optimised kernels and libraries

Must in-progress

CMP-3 Service
deployments

The eFlows4HPC software stack should support the deployment
of Data Bases and Services required by the DA and ML
frameworks in the auxiliary cloud and HPC centres

Must Pending

CMP-4 Service
Invocation

Workflows developed with eFlows4HPC stack must support the
invocation of services

Must Done

CMP-5 Multi-node
execution
support

Workflows developed with eFlows4HPC stack must support the
execution of applications distributed in different computing
resources (such as MPI applications)

Must Done

CMP-6 Multicore
execution
support

Workflows developed with eFlows4HPC stack must support the
execution of applications with multithreaded/multiprocess using
several cores

Must Done

3.3. Constraints from HPC Centres
The last source of requirements is provided by HPC centres. Supercomputers are singular infrastructures
shared by different users at the same time. System administrators have to preserve the security of the data
processed while keeping the performance of the whole system. For this reason, supercomputers have
several constraints in terms of accessibility and usability which have to be taken into consideration when

DRAFT

8

D1.3 Revision of Requirements and Architecture Design
Version 1.0

producing software or services using these systems. Not fulfilling these constraints can prevent the
adoption of a certain technology in these computing environments.

During the first phase of the requirements analysis, we produced a survey with different HPC centres. We
prepared a questionnaire (available in D1.1[1]) asking questions related to the main objectives of the
eFlows4HPC platform including access and security aspects, available services, software management tools,
and execution restrictions. In the second phase of the project, this questionnaire has been sent to system
administrators of HPC centres which are not involved in the project, to validate whether the common
limitations and supported technologies identified in the first phase are still valid for these new HPC centres.
We have received answers from CSC (hosting the LUMI supercomputer), HLRS (hosting Hawk and Vulcan
supercomputers), IT4I (hosting Karolina and Barbora supercomputers), CINECA (hosting Marconi
supercomputer), EPCC (hosting Archer and Cirrus supercomputers) and GENCI who has provided answers
for the IDRIS’s Jean Zay and the CEA-TGCC’s Joliot-Curie HPC clusters. The answers of the survey provided
by these HPC centres are summarised in the following table.

Table 5. Summary of the results of the second round of the HPC centres survey

Site CSC HLRS IT4I CINECA GENCI EPCC

Access &
Security

Access SSH SSH SSH SSH SSH SSH

Identity SSH Keys Password
SSH Keys

SSH Keys SSH Keys SSH keys/
Password

SSH keys

UNICORE No No No yes No No

In Conn. SSH SSH from
VPN or user
IPs

SSH SSH, GridFTP restricted IP
list from EU

SSH/ICMP

Out Conn. Allowed Not allowed HTTP(s), ssh
scp, rsync

Allowed None by
default

DNS
blocked

Cluster Nodes
Restrictions

Login Restricted Restricted Restricted Restricted Restricted Restricted

Service No Not Allowed Not
Allowed

Not Allowed with
restrictions

on request

Compute No SSH No
restrictions

No
restrictions

No
restrictions

No
restrictions

No
restrictions

Queue System
Shared disk

Queue
system

Slurm PBS PBS Slurm Slurm Slurm/PBS

Shared
disk

Lustre NFS (Home)
Lustre
(Scratch)

GPFS,
HPST(BB)

 Lustre/GPFS GPFS Lustre/XFS
/CEPH

Software
Management

Modules Yes Yes Yes Yes Yes Yes

Installatio
n tools

Spack,
Easy-build

Conda Easy-build Spack,
Conda

Easybuild,
Conda (with
connectivity
restrictions)

Conda

Containers Singularity Singularity
(production)

Singularity Singularity Singularity/
PoCC

Singularity

DRAFT

9

D1.3 Revision of Requirements and Architecture Design
Version 1.0

podman/
docker
(evaluation)

Data
Infrastructure

Data
Interfaces

SCP SCP
UFTP,
GridFTP

SCP
rsync
iRODS-
B2SAFE

SCP, SFTP,
GridFTP,
UFTP, rsync

SCP SCP

Storage
Levels

NVMe,
Lustre over
SSD/HDD,
object
storage
(ceph)

NFS/Lustre
HPSS
(Archive)
Quobyte
(Object
Store)

NVMe
Lustre
CESNET
(Archive)

Local disk
Shared
Tape

Scratch:
GPFS over
SSD
Work: GPFS
over HDD
Storage:
DMF (GPFS
over HDD +
Tape)

Lustre
(HDD,
NVMe)/
XFS/NVMe
CEPH(HDD)

Analysing the answers of the table, we can see the results are similar to the ones obtained in the previous
deliverable (D1.1):

- SSH and SCP is still the common remote shell and transfer protocol supported by all the systems.
So, it is still recommended that eFlows4HPC platform must support these two protocols to interact
with HPC Systems

- In this second round, we still see that the availability to deploy services or daemons in login or
service nodes is very limited, due to most clusters either do not provide nodes suitable to install
them at user level and login nodes have limited connectivity or execution restrictions, such as
execution time and memory. So, the eFlows4HPC platform can not rely on services deployed in the
HPC system which must persist between executions or require external connectivity. The usage of
service must be limited to the computation execution or deployed outside the HPC cluster.

- For software management, all systems use Modules for managing the environment of the installed
software and containers. Singularity is still the engine supported by most of the systems. Another
restriction regarding containers due to network connectivity, images can not be downloaded from
external registries. So, they have to be managed as files which must be copied to the sites using the
supported protocols.

- All systems have a POSIX accessible shared file system, however other types of storage and its usage
varies depending on the site.

- Slurm is the most extended queue system but not the only one. Implementing tools supporting this
system will cover a considerable amount of sites. However, the queue system is the key component
in an HPC site and system administrator will not change to adopt the eFlows4HPC stack. For this
reason, components of the stack that interacts with HPC systems must include mechanisms to
support several queue systems.

The following table summarises the identified constraints and limitations in terms of requirements for the
eFlows4HPC architecture as well as their implementation status after the first phase of the project. In this
case, all the requirements have been already implemented.

Table 6. Summary of the requirements from HPC centres

ID Name Description Priority Status
M20

HPC-1 HPC Cluster The interactions between eFlows4HPC software stack and the Must Done

DRAFT

10

D1.3 Revision of Requirements and Architecture Design
Version 1.0

access support HPC systems must at least support the SSH protocol

HPC-2 HPC Data
Transfers
support

Transfers to/from HPC clusters must support at least the SCP
protocol

Must Done

HPC-3 Singularity
Container
support

The usage of containers in the HPC system must be
compatible with singularity containers.

Must Done

HPC-4 Infrastructure
Service
deployment

The eFlows4HPC software stack can not rely only on services
which require to be installed with privileged nodes or users in
the supercomputing clusters.

Must Done

HPC-5 Queue System Supported queue systems must include at least Slurm and
must provide extension mechanisms to provide other queue
systems.

Must Done

4. Architecture Update
During the first phase of the project, we tried to design and implement methodologies and mechanisms to
achieve the required functionalities. During this period, we have identified missing components and
redefined their interactions in order to better implement these functionalities. In this section, we provide
details of the major changes included in the new version of the architecture. It will describe the new
components in the software stack as well as the updated component interactions. More details about the
components not updated in this deliverable can be found in Deliverable 1.1 [1].

Figure 1 shows the overview of the eFlows4HPC software stack. As in the first year, it is will composed of a
set of software components, organised in different layers: The first layer provides the syntax and
programming models to implement and automatically operate complex workflows combining typical HPC
simulations with HPDA and ML; The second layer consists of a set of services, repositories, catalogues, and
registries to facilitate the accessibility and re-usability of the implemented workflows, software
components, data sources and results; Finally, the lowest layers provide the functionalities to automate the
deployment and execution of the workflow. This layer provides the components to orchestrate the
deployment and coordinated execution of the workflow components in federated computing
infrastructures. Moreover, it provides a set of components to manage and simplify the integration of large
volumes of data from different sources and locations with the workflow execution. All the actions
performed in the layer are performed according to the workflow description provided by the first layer of
the architecture and the metadata stored in the services of the second layer.

4.1. Component Updates
Most of the eFlows4HPC components of the Software Stack are the same as described in Deliverable 1.1.
In this second version of the architecture, a new component is introduced (Container Image Creation) and
the HPC Workflow as a Service, Workflow Registry and Software Catalogue are updated.

4.1.1. HPC Workflow as a Service (HPCWaaS)

The HPC Workflow as a Service component provides the interfaces to Workflow developers and final
workflow users to manage the different parts of the workflow’s lifecycle. It is composed of two
subcomponents that offer the interfaces according to the user role. Workflow developers interact with
Alien4Cloud to develop and deploy workflows and the final workflow users interact with the Execution API
to execute the deployed workflows.

DRAFT

11

D1.3 Revision of Requirements and Architecture Design
Version 1.0

On the one hand, Alien4Cloud is a web GUI which allows developers to create and deploy workflows as
TOSCA topologies in a user-friendly way. This TOSCA topology describes the deployment and operation
procedures of a workflow which can be deployed in different environments (HPC sites). In the case of
development capabilities, it allows developers to create topologies from scratch and save them in the
Workflow Registry, or reusing the existing ones to create new workflows or to deploy the same workflows
in new environments.

On the other hand, the Execution API is a REST API and a CLI which allow the workflow users to see the
deployed services in the different environments, to manage the credentials in the different environments
and to execute the deployed workflows using these credentials.

Figure 1.eFlows4HPC Software Stack Overview

4.1.2. Workflow Registry (WR)
The Workflow registry is a GIT repository which allows developers to store the developed workflows.
Workflows are stored in different folders following the structure indicated in Figure 2. Inside the workflow
folder, there is a tosca subfolder which is used to store the TOSCA description[2]. It is a topology with the
relationship of workflow components including the data pipelines and PyCOMPSs computational workflows
as steps of the overall workflow. Then, there is a set of folders that include the PyCOMPSs code and the
software requirements of each workflow step.

To include new workflows in the registry, workflow developers have to create a new fork or branch of the
git repository. In this fork/branch, they have to include a new folder for the workflow with a subfolder for
the TOSCA description and the different workflow steps, as explained above. Finally, to make it available
for the community, they have to create a pull request of the branch/fork containing the new workflow
description to the main branch. This pull request will be reviewed by the community and included in the
repository.

DRAFT

12

D1.3 Revision of Requirements and Architecture Design
Version 1.0

Figure 2. Structure of the descriptions stored in the Workflow Registry

4.1.3. Software Catalogue (SC)
The Software Catalogue is a GIT repository which allows software owners and workflow developers to store
the description of the software used in the workflows in a way that the eFlows4HPC Software Stack can
manage it transparently to final users. Figure 3 shows an example of software descriptions. It is following a
structure compatible with software repositories of HPC build systems such as Spack[3] or Easybuild[4]. In
the case of the figure, we have shown the example for the Spack system. All Software packages are stored
in a packages folder. Inside this folder, there is a subfolder per software package where developers have to
include: the package.py file with the installation description according to the Spack schemas, and different
invocation.json files to describe the different ways to invoke the software.

Figure 3. Structure of the description stored in the Software Catalogue

To include new software packages in the catalogue, developers have to create a new fork or branch of the
git repository. In this fork/branch, they have to include a new subfolder for the software with the
installation and invocation descriptions, as explained above. Finally, to make it available for the community,
they have to create a pull request of the branch/fork with the new software description to the main branch.
This pull request will be reviewed by the community and included in the repository.

4.1.4. Container Image Creation (CIC)
The Container Image Creation is a component which automates the creation of the container images
tailored to a specific platform. This component leverages specialised HPC builders (such as Spack[3] or

DRAFT

13

D1.3 Revision of Requirements and Architecture Design
Version 1.0

Easybuild[4]) multi-platform container build tools (such as buildx1) and the information provided by the
eFlows4HPC Software Catalogue and Workflow Registry to automatically create optimised container
images required to execute a workflow in a specific HPC machine.

Figure 4. Container Image Creation Overview

As depicted in Figure 4, given a workflow registered in the Workflows registry and a description of a target
platform (such as CPU architecture, available MPI versions and accelerators), the CIC orchestrates the
creation of the workflow image for this platform, by generating a container building environment and a
recipe with the required software and executing this recipe in the multi-platform container build tool. At
the end of this process, the generated image will be stored together with a metadata description to avoid
creating again the same image for a similar platform.

4.2. Software Stack deployment
Figure 5 shows the different components of the eFlows4HPC Software stack according to their deployment.
Two types of components are identified. The Gateway Services are the components deployed in resources
which are external to the computing infrastructures but accessible by the developers and final users
through standard HTTPS protocols. They are used to expose the HPC Workflows as a Service interfaces and
repositories to allow the workflow reusability and to coordinate the workflow lifecycle outside the
computing infrastructure. The Runtime Components are the components which are used during the
execution of the workflow and they must be deployed in the computing infrastructure. The interactions
between the Gateway services and runtime components are limited to either standard SSH/SCP protocols
(which is common in all HPC sites and Cloud Environments) or the Unicore services, if the HPC site supports
this middleware. These runtime components can be also deployed inside the workflow container images
together with other HPDA/ML frameworks required by the workflows.

4.1. Usage and component interactions
This section provides the description of the component interactions in order to implement the required
functionalities for the Software Stack and the HPC Workflow as a service methodology. Figure 6 shows an
overview about how the proposed solution works and the main usage cases of the different actors
(developers and final users). The HPC Workflow as a Service offering is built on top of the eFlows4HPC
software stack in order to provide the required functionality to develop, deploy and execute the complex
services. The different usages of the HPCWaaS are organised depending on the actor: developers are in

1 https://docs.docker.com/build/buildx/

DRAFT

14

D1.3 Revision of Requirements and Architecture Design
Version 1.0

charge of the workflow development and deployment, and the final user’s communities are performing the
execution of the deployed workflows. Next paragraphs provide more details about how the different
eFlows4HPC components interact to provide the required functionality in the different use cases. First, we
will provide the details about how a workflow is developed. Then, we will explain how the developers’ and
final users’ credentials are managed to delegate the access to the computing infrastructure in order to
perform the deployment and execution. Afterwards, we will provide the details about the workflow
deployment process. Finally, we will provide the details about the workflow execution performed by the
final users.

Figure 5.eFlows4HPC Software Stack Deployment Diagram

Figure 6. HPC Workflow as a Service usage cases overview

DRAFT

15

D1.3 Revision of Requirements and Architecture Design
Version 1.0

4.1.1. Workflow development
One key part of the mentioned challenges is the implementation of complex workflows that combine HPC,
HPDA, and ML framework which can be easily shared and reused by different users and systems. These
functionalities are provided by different components of the eFlows4HPC software stack (Figure 1). On the
one hand, it provides a set of registries, catalogues and repositories, providing workflow developers with
the means to store the core components (HPC, DA, and ML frameworks) and the required data and ML
models in such a way that they can be easily reused and combined. On the other hand, we propose the
definition of a workflow description which enables the combination of the different workflow components.
From this workflow description, the third layer of the eFlows4HPC software stack can be used to
automatically deploy and execute the workflow in the Computing Infrastructures.

Figure 7. Workflows development overview

Figure 7 shows an overview about how the workflow developer interacts with the different components to
develop these sharable and reusable complex workflows. The proposed workflow description is composed
of a combination of Data Logistics pipelines, PyCOMPSs workflows, and an extended TOSCA description.

The data logistics pipelines allow developers to describe how the workflow data is acquired, moved and
stored during the workflow execution in order to ensure the data is available in the computing
infrastructure when required. The data pipelines are simple Python scripts that invoke different generic
data operations to be performed on a dataset. So, the same data pipeline can be applied to different
datasets, and the description of these datasets are stored in the Data Catalogue.

On the computational workflow side, PyCOMPSs[5] is a task-based programming model that enables the
development of workflows that can be executed in parallel on distributed computing platforms. It is based
on programming sequential Python scripts, offering the programmer the illusion of a single shared memory
and storage space as well as the dynamicity of the Python programming language (dealing with loop,
conditionals, exceptions, etc.). While the PyCOMPSs task-orchestration code needs to be written in Python,
it supports different types of tasks, such as Python methods, external binaries, multi-threaded (internally
parallelised with alternative programming models such as OpenMP or pthreads), or multi-node (MPI
applications). This PyCOMPSs mechanism is extended to enable the integration with the software
descriptions stored in the Software Catalogue. Using this mechanism, developers can transparently include
specific software invocation within their workflows by just defining a PyCOMPSs task which refers to the
software description. Every time that a task is invoked in the PyCOMPSs workflow, the COMPSs runtime[6]
will interpret this description and perform the software invocation in the computing infrastructure. In this

DRAFT

16

D1.3 Revision of Requirements and Architecture Design
Version 1.0

way, PyCOMPSs provides developers a programming model where they can naturally integrate well with
data analytics and machine learning libraries, most of them offering a Python interface, as well as other
types of computations such as HPC simulations.

TOSCA (an orchestration standard) is exploited to provide the description of the overall workflow lifecycle.
It is used to describe the topology of the different components (data pipelines, PyCOMPSs workflows, or
other required service/software deployment) required by the workflow and their relationship with the
different steps of the workflow lifecycle. This topology is used by Ystia Orchestrator (Yorc) to orchestrate
the different phases of the workflow deployment and execution.

Once the developer has finished with the workflow description, it can be stored in the Workflow Registry
(Step 2 in Figure 7) as indicated in Section 4.1.2, and deployed to the computing infrastructure by means of
the Alien4Cloud (Step 3 in Figure 7). More details of the deployment use case is provided in Section 4.3.3.

4.1.2. Credential Management
For deploying and executing workflows in the computing infrastructure, developers and final users need to
configure their credentials in order to grant the eFlows4HPC services access to the computing infrastructure
on behalf of them. Figure 8 shows an overview about how credentials are managed in the eFlows4HPC
architecture.

Both developers and final users have to generate a credential to access the system using the Execution API
(SSH key pair or similar credential). This credential will be internal in a secret storage (such as Hashicorp
Vault2) which is only accessible by the components of the Gateway Services (Step 1). As result of this
procedure, a random-based token and a public key will be provided to the developer or final user. On the
one hand, developers and final users have the responsibility to add the public key to the authorized_keys
of their account in the computing infrastructure. It allows the eFlows4HPC services to access the computing
infrastructure on behalf of the user. On the other hand, the random-based token is used to identify the
stored credentials and it will be provided to the Gateway services by every time a workflow is deployed or
executed. When one of these services require to interact with the computing, it queries the Secret Storage
with the provided token, and the Secret Storage returns the credential to access the infrastructure. Once,
the interaction with infrastructure is finished the credential is discarded.

Figure 8. Credential management overview

2 https://github.com/hashicorp/vault

DRAFT

17

D1.3 Revision of Requirements and Architecture Design
Version 1.0

4.1.3. Workflow Deployment
Figure 9 provides an overview about how components interact to provide the deployment functionalities.
When developers want to execute a workflow, they use the Alien4Cloud interface of the HPCWaaS to
indicate the workflow to deploy, select the environment (computing infrastructure) to deploy it, and
provide their access token. As result of this interaction, the Alien4Cloud will retrieve the TOSCA description
(Step 1) and contacts the Ystia Orchestrator (Yorc) is in charge of orchestrating the deployment of the main
workflow components in the computing infrastructures and managing their lifecycle as indicated in the
TOSCA part in the workflow description (Step 2). The actions orchestrated by Yorc include the interactions
with Container Image Creation component to perform the creation of the container images for the selected
environment (Step 3), and the interactions Data Logistics Service to set up the data pipelines to transfer the
generated container images and other common datasets or models which are required by all the workflow
executions (Step 4). The access to the HPC infrastructure can be done either SSH/SCP protocols which is the
common access protocol to these types of infrastructures or through the Unicore services in the case that
this middleware is available in the HPC infrastructure.

Figure 9. Workflow deployment overview

4.1.4. Workflow Execution
Once the workflow is deployed, the final users can use the Execution API of the HPC Workflow as a Service
interface to submit the workflow executions in the computing infrastructure (Figure 10). The Execution API
will contact to Yorc (Step 1) which will orchestrate the execution part of the TOSCA description. It includes
the execution of the computation (Step 2a) where Yorc executes the PyCOMPSs workflows, and the data
pipelines (Step 2b), where Yorc sets-up the data pipelines which must be active during the execution (such
as the data stage-in and stage-out, or periodical transfers to synchronise data produced outside the HPC
systems).

Regarding the execution computation, it is managed by the COMPSs runtime which coordinates the
execution of the different computations implemented with the PyCOMPSs programming model in the
available computing resources. As mentioned before, PyCOMPSs supports several task types which can
include either HPC simulations as well as Data Analytics or Machine learning algorithms [7]. The COMPSs
runtime dynamically generates a task-dependency graph by analysing the existing data dependencies

DRAFT

18

D1.3 Revision of Requirements and Architecture Design
Version 1.0

between the invocations of tasks defined in the Python code. The task-graph encodes the existing
parallelism of the workflow, which can be used to schedule the executions in the resources already
deployed by Yorc. Based on such scheduling the COMPSs runtime can interact with the different HPC, DA
and ML runtimes in order to coordinate the resources usage performed by the different invocations to
avoid overlaps and get the maximum performance from the available resources. Apart from the dynamic
task graph generation, the COMPSs runtime is also able to react to task-failures and exceptions in order to
adapt the workflow behaviour accordingly. These functionalities, together with similar features provided
by Yorc at a higher level, offer the possibility of supporting workflows with a very dynamic behaviour, that
can change their configuration at execution time upon the occurrence of given events, such as failures or
exceptions.

Figure 10. Workflow execution overview

Finally, regarding the integration of the data management and computation, the eFlows4HPC stack also
provides two solutions for persistent storage: Hecuba (based on key-value databases) and dataClay (object-
oriented distributed storage). These solutions can be used in PyCOMPSs applications to store application
objects as persisted objects, either in disk or in new memory devices, such as NVRAM or SSDs, enabling to
keep data after the execution of the application. This changes the paradigm of persistent storage in HPC,
dominated by the file system, to other more flexible approaches. By using persisted objects, application
patterns such as producer-consumer, in-situ visualisation or analytics, can be easily implemented.

4.2. Requirement fulfilment by architecture components
The following table provides the relationship between the components of the eFlows4HPC architecture and
the requirements extracted from the different sources. For each requirement we have identified which
components are involved in providing the required functionality. This table has been updated in the second
phase of the project including the new CIC component.

DRAFT

19

D1.3 Revision of Requirements and Architecture Design
Version 1.0

Table 7. Components requirements matrix. First characters of the ID indicates the source of the requirement (PX for Pillars, CMP for
Components, HPC for HPC centres). The acronyms of the Components can be found in Section 7.

Requirements

Components Involved

H
P
C
W
a
a
S

D
C

S
C

W
R

M
R

C
I
C

H
P
D
A
-
F
w
.

M
L
-
F
w

P
y
C
O
M
P
S
s

Y
O
R
C

U
N
I
C
O
R
E

D
L
S

H
e
c
u
b
a

d
a
t
a
C
l
a
y ID Description

P1-1 Distributed SVD x x

P1-2 Storing of hyper-reduced model x

P1-3 DNN model x x

P1-4 Clustering model x x x

P1-5 Persistent storage x x

P1-6 Restart x x x

P1-8 ML inference x

P1-9 Deployment x x x

P2-1/P3-4 Execution Robustness x x x

P2-2/P3-6 Portability x x x x x

P1-7/ P2-
3/P3-8

Workflow Orchestration /
Integrated workflow management x x x x

P2-4/P3-9 Integration with permanent storage x x x x

P2-5 Workflow adaptability x x

P2-6 Access to intermediate in-memory
results x x x

P2-7 AI integration for ensemble member
pruning x x x x

P2-8 ML/DL capabilities x x

P2-9 DA capabilities x

P2-10 High Performance Computing support x x x

DRAFT

20

D1.3 Revision of Requirements and Architecture Design
Version 1.0

P2-11 Multi-member analysis x x x x x x

P2-12 Usability x x x x

P3-1 Urgent computing access x x

P3-2 Data interoperability x

P3-3 Data replication x x x x

P3-5 Infrastructure interoperability x x x x

P3-7 Streaming Data Source x x x x

P3-10 Inference of online/offline ML
models x x

P3-11 Data Analytics integration x x x x

P3-12 Workflow malleability x x x

CMP-1 Access to HPC specific devices x x x x x x

CMP-2 Support Optimised kernels x x x x x x

CMP-3 Service deployments x x

CMP-4 Service Invocation x

CMP-5 Multi-node execution support x x x

CMP-6 Multicore execution support x

HPC-1 HPC Cluster access support x x

HPC-2 HPC Data Transfers support x x

HPC-3 Singularity Container support x x x x x x x

HPC-4 Infrastructure Service deployment x x x

HPC-5 Queue System x x x

5. Conclusions
After the first implementation phase of the eFlows4HPC project, we have conducted a revision of the
requirements and the architecture. Regarding the Pillar’s requirements, they have been reviewed with the
help of the WP4, WP5, WP6 partners to identify they gathered requirements are still valid, their priority is
correct and what is the current implementation status to identify what are the most important missing

DRAFT

21

D1.3 Revision of Requirements and Architecture Design
Version 1.0

requirements to be prioritised in the following implementation phases. The same procedure has been
followed for the software components requirements where we have identified some missing requirements.
Regarding the HPC centres, we have updated our survey including HPC centres (which are not part of the
project) in order to validate that the requirements gathered in the first phase are still relevant.

As a consequence of the first implementation phase, we have identified some gaps or not clearly defined
parts in the architecture which are updated in this deliverable. A new component (CIC) has been included
in the workflow deployment part which is in charge of creating tailored container images for specific HPC
systems, and the HPCWaaS, Software Catalogue and Workflow Registry components have been updated.
Apart from the components update, a deployment diagram has been defined to clarify the different parts
of the infrastructure and where the different components of the software stack are deployed. Finally, the
main use cases have been updated, including the credential management and the component interactions
have been updated to include the component changes and clarify their interactions.

6. Acknowledgement
We want to thank the collaboration the member of the following institutions for dedicating part of their
time in providing the answers to the HPC centres survey: Jesse Harrison and Henrik Nortamo from CSC,
Bastian Koller and Jochen Buchholz from HLRS, Martin Golasowski from IT4I, Daniele Ottaviani from CINECA,
Mark Sawyer and Kieran Leach from EPCC, and Stéphane Requena from GENCI.

7. Acronyms and Abbreviations

- AI - Artificial Intelligence
- API - Application Programming Interface
- CIC - Container Image Creation
- CLI - Command Line Interface
- CPU - Central Processing Unit
- D – deliverable
- DA - Data Analytics
- DAG - Directed Acyclic Graph
- DC - Data Catalogue
- DL - Deep Learning
- DLS - Data Logistics Service
- DMCF - Data Mining Cloud Framework
- EDDL - European Distributed Deep Learning library
- ETL - extract, transform, load
- FaaS - Function as a Service
- FAIR - Findable Accessible Interoperable Reusable
- FPGA - Field Programmable Gate Array
- GPU - Graphics Processing Unit
- GUI - Graphical User Interface
- HeAT - Helmholtz Analytics Toolkit
- HPC – High Performance Computing

DRAFT

22

D1.3 Revision of Requirements and Architecture Design
Version 1.0

- HPCWaaS - HPC Workflow as a Service
- HPDA - High-performance Data Analytics
- IaaS - Infrastructure as a Service
- ID- Identifier
- JSON - JavaScript Object Notation
- KPI – Key Performance Indicator
- M - Month
- ML - Machine Learning
- MPI - Message Passing Interface
- MR - Model Repository
- NN - Neural Network
- NVRAM - Non-Volatile Random Access Memory
- ParSoDA - Parallel Social Data Analytics
- POSIX - Portable Operating System Interface
- PRACE - Partnership for Advanced Computing in Europe
- REST - Representational State Transfer
- SC - Software Catalogue
- SCP - Secure Copy
- SSD - Solid State Disk
- SSH - Secure Shell
- SVD - Singular Vector Decomposition
- TOSCA - Topology and Orchestration Specification for Cloud Applications
- UI - User Interface
- VPN - Virtual Private Network
- WP – Work Package
- WR - Workflow Registry

8. References
[1] eFlows4HPC Consortium. “D1.1 Requirements, Metrics and Architecture Design”, 2021.
[2] OASIS Standard. “Topology and orchestration specification for cloud applications version 1.0”.

2013. On-line: http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
[3] Gamblin, Todd, et al. "The Spack package manager: bringing order to HPC software chaos."

Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. 2015

[4] Hoste, Kenneth, et al. "Easybuild: Building software with ease." 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis. IEEE, 2012.

[5] Tejedor, E., et al. "PyCOMPSs: Parallel computational workflows in Python." The International
Journal of High Performance Computing Applications 31.1 (2017): 66-82.

[6] Badia, Rosa M., et al. "Comp superscalar, an interoperable programming framework." SoftwareX 3
(2015): 32-36.

[7] Elshazly H, Lordan F, Ejarque J, Badia RM. “Performance Meets Programmabilty: Enabling Native
Python MPI Tasks In PyCOMPSs”. In Proceeding of the 28th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP) (2020) (pp. 63-66). IEEE.

DRAFT

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html

	1. Executive Summary
	2. Introduction
	3. Revision of the Requirements
	3.1. Requirements from Pillars
	3.2. Requirements from Components
	3.3. Constraints from HPC Centres

	4. Architecture Update
	4.1. Component Updates
	4.1.1. HPC Workflow as a Service (HPCWaaS)
	4.1.2. Workflow Registry (WR)
	4.1.3. Software Catalogue (SC)
	4.1.4. Container Image Creation (CIC)

	4.2. Software Stack deployment
	4.1. Usage and component interactions
	4.1.1. Workflow development
	4.1.2. Credential Management
	4.1.3. Workflow Deployment
	4.1.4. Workflow Execution

	4.2. Requirement fulfilment by architecture components

	5. Conclusions
	6. Acknowledgement
	7. Acronyms and Abbreviations
	8. References

