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1.  Executive Summary 
This deliverable describes the status of the development activities performed in the context of Pillar 
II of the eFlows4HPC project at the end of Iteration 2 – Phase 3. Two workflows have been taken 
into account, both belonging to the climate science field and involving Earth System Models results 
analysis: 

• The dynamic ESM workflow, with the aim to integrate dynamic access to model results and 
online-based approaches to prune ensemble simulation members during the model 
execution; 

• The feature extraction workflow, with the aim to integrate HPDA and ML approaches on ESM 
results to analyze extreme events such as Heat and Cold Waves and Tropical Cyclones. 

The document provides an overview of the main achievements reached during this phase, followed 
by a detailed description of the status and the last advancements concerning the two 
aforementioned workflows. 

 

2.  Introduction 
The eFlows4HPC Iteration 2 – Phase 3 concerns the second version of the Pillars’ workflows. At this 
stage, in the context of Pillar II, almost all the different modules constituting the two workflows 
have been developed and deployed. Both workflows exploit the eFlows4HPC tools and software 
(i.e., Ophidia[1], Hecuba[2], PyCOMPSs[3], etc.), and both have been integrated with the expected 
software stack for a first prototypal end-to-end execution. 

In addition, further advancements have been made with respect to the optimization of existing 
functionalities and the development of new ones to better support the objectives of the project and 
the needs of the climate community[4]. 

 

3.  Summary of achievements 
In this section the main achievements with respect to Iteration 1 – Phase 2 are highlighted; they 
regard both workflows considered in Pillar II and concern firstly the novel capabilities developed to 
support the Pillar II use cases, then the optimization of functionalities implemented, and finally the 
integration with the eFlows4HPC HPCWaaS software stack by means of the related software and 
frameworks (e.g., Alien4Cloud[5] PyCOMPSs, Yorc[6], etc.). 

3.1. Dynamic ESM workflow 
Running a coupled Earth System Model (ESM) on a supercomputer can be a challenging task as 
ESM’s consist of several steps to prepare, run, and refine and obtain the output data (post-
processing and diagnostics stages [7, 8]). 

With the complexity of ESMs in view, the work was decomposed into incremental parts, running 
and building workflows with ocean only, FESOM2 model and then integrating coupled OpenIFS-
FESOM2 into the developed workflows.  We can summarize the achievements since the last 
deliverable (D5.3) as follows: 
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- Development and deployment of the workflow using FESOM2 ocean model on 
MareNostrum 4 using Alien4Cloud (more on this in Section 4). 

- Development of an extended version of HECUBA to simplify specification of data models 
used to ingest climate model data into Cassandra[9]. 

- Integration of PyCOMPSs to support pruning ensemble. 

- Deployment of the OpenIFS-FESOM2 (AWICM[10]) coupled model in MareNostrum 4, and 
its initial integration into the workflow as a component. 

These are described in detail in Section 4, along with plans for the final phase of the project. 

3.2. Statistical analysis and feature extraction workflow 
The statistical analysis and feature extraction workflow of Pillar II has the aim to integrate ML and 
HPDA features in a single end-to-end workflow in order to analyze the occurrence of extreme events 
(specifically Heat Waves and Tropical Cyclones) starting from the output of the CMCC-CM3 climate 
model. 

With respect to Iteration 1, the following advancements and optimizations have been achieved. In 
Section 5 they will be analyzed more in details: 

- We applied the STREAM IN parameter to the definition of the initial PyCOMPSs task allowing 
the use of the PyCOMPSs streaming interface to better manage the entire workflow 
execution. 

- The IBTrACS (recent and historical tropical cyclone datasets) filtering has been improved, 
selecting 6-hourly records. 

- 13 models have been trained and fine-tuned for the ML based TC detection task on historical 
data, as well as their classification and localization metrics on the test set. 

- The TSTORMS[11] tool for the deterministic TC detection has been integrated in the overall 
PyCOMPSs workflow. 

- Exploiting Alien4Cloud and YORC the workflow has been integrated in the eFlows4HPC 
HPCWaaS framework. 

 

4. Dynamic ESM simulation workflow 
This section provides an overview of the work achieved in the Dynamic ESM simulation workflow 
development by the end of the second iteration - Phase 3. The current execution flow of the ESM 
dynamic workflow is illustrated in figure 1. 

During the first iteration, the FESOM2 ocean model, Hecuba, and PyCOMPSs were integrated into 
the workflow, and this was deployed on MareNostrum 4. The workflow in this iteration was 
executed as a conventional SLURM[12]  batch script. 

In the second development iteration of WP5, the coupled model was integrated with the workflows 
using ocean only configurations. This phase also included containerizing workflow components for 
eFlows4HPC software stack, used to create the HPCWaaS application. In the following subsections 
we describe different blocks of this phase and list next steps until completion of the project.  
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Figure 1. Activity diagram displaying the overall ESM dynamic workflow.  

 

4.1. ESM initialization block 
One of the prerequisites for running the ESM workflow, as mentioned in deliverables D5.1, D5.2, 
and D5.3, is to prepare several datasets required for the model run. These datasets are included in 
the general ensemble settings defined for the run, which are centralized in the master ensemble 
configuration file (figure 2, changes from iteration 1 in bold). 

In D5.4 the master configuration file received new settings to define the number of cores needed 
for each model component, and other variables that manage the coupling and OpenIFS settings. 
This is depicted in figure 2, where several “export” statements are highlighted. 
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module load COMPSs/eflows4hpc 
module use /apps/HECUBA/modulefiles 
module load Hecuba/2.0 #  
module load impi/2018.4 
module load netcdf/4.4.1.1 
module load eccodes/2.8.0 
module load hdf5/1.8.19 
 
#module load Hecuba/1.0_api 
# Hecuba already loads a special version of Python so not needed at this stage 
#module load python 
# experiment configuration 
# only parameter - #CORES 
#export FESOM_CORES=$1 
# possible values: bsc_es/debug 
export QOS=debug 
export MEMBERS=3 
export USE_HECUBA="TRUE" 
# 7 nodes per ensemble  member 
export NODE_ALLOCATION=7 
[[ "$1" == "TRUE" ]] && USE_HECUBA="TRUE" || USE_HECUBA="FALSE" 
echo "Number of cores: ${FESOM_CORES}" 
echo "Number of nodes to be used: ${NODE_ALLOCATION}" 
 
#added by support to prevent the segmentation fault 
ulimit -Ss unlimited 
 
##########  components and core configuration ########## 
 
export OIFS="./master.exe" 
export OIFS_CORES=128 
export FESOM="./fesom.x" 
export FESOM_CORES=144 
export RNFMAPPER="./rnfmap.exe" 
export RNFMAPPER_CORES=1 
 
export FESOM_USE_CPLNG="active" 
export ECE_CPL_NEMO_LIM="false" 
export ECE_CPL_FESOM_FESIM="false" 
export ECE_AWI_CPL_FESOM="true" 
 
# to address issue with srun 
COMPSS_MPI_TYPE=impi 
export 

ECCODES_SAMPLES_PATH=/apps/ECCODES/2.8.0/INTEL/share/eccodes/ifs_samples/grib1/ 
 
# Sample invocation of this script: 
# ./launch_mn4.sh 288 debug 1 
# ./launch_mn4.sh 144 debug 3 
# ./launch_mn4.sh 144 debug 1  
# $1 number of cores needed by the task 
# $2 QoS to be used (determines the queue) 
# $3 number of simulations of the ensemble 
 
EXP_ID=$(printf "%06d\n" $((1 + $RANDOM % 100000))) 
#EXP_ID="awi3" 
# prepare work folder 
mkdir $EXP_ID 
cd $EXP_ID 
cp -rf /home/bsc32/bsc32044/awicm3_ensemble/*.py  . 
cp -rf /home/bsc32/bsc32044/awicm3_ensemble/config . 
cp -rf /home/bsc32/bsc32044/awicm3_ensemble/hecuba_lib . 
 
# launch the esm ensemble simulation with hecuba infrastructure  through COMPSs 

(WORKING) 
if [[ "${USE_HECUBA-}" == "TRUE" ]]; then 
        echo "Running with HECUBA ENABLED" 
        enqueue_compss -t -g -d --sc_cfg=mn.cfg  \ 
               --qos=${QOS}  \ 
               --storage_props=$PWD/hecuba_lib/storage_props.cfg \ 
               --storage_home=$HECUBA_ROOT/compss \ 
               --job_name=esm_workflow  \ 
               --exec_time=120  \ 
               --keep_workingdir \ 
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               --worker_working_dir=$PWD \ 
               --worker_in_master_cpus=48  \ 
               --num_nodes=${NODE_ALLOCATION}  \ 
               --pythonpath=$PWD:$HECUBA_ROOT/compss esm_simulation.py ${EXP_ID} 
 
else 
        echo "Running without HECUBA"  
        enqueue_compss -t -g -d --sc_cfg=mn.cfg  \ 
               --qos=${QOS}  \ 
               --storage_props=$PWD/hecuba_lib/storage_props.cfg \ 
               --job_name=esm_workflow  \ 
               --exec_time=120  \ 
               --keep_workingdir \ 
               --worker_working_dir=$PWD \ 
               --worker_in_master_cpus=48  \ 
               --num_nodes=${NODE_ALLOCATION}  \ 
               --pythonpath=$PWD esm_simulation.py ${EXP_ID} 

Figure 2. ESM workflow initialization script. 

 

The initialization of the ESM includes a PyCOMPSs configuration task that prepares the structure of 
working directories for each member of the ensemble, the namelists of the model for each 
ensemble member, and the output directories in the cluster. This can be seen in figure 2, near the 
comment “prepare work folder”, in bold. The Python scripts copied (*.py) contain more logic for 
handling the members and namelists. 

The namelist files are generic and have meta-variables (also known as placeholders) that are 
replaced with the values defined in the master configuration file. This step must be performed 
before the model is executed. During the phase 3 of the iteration 2, this task was expanded to cover 
the coupling and OpenIFS settings. 

4.2. ESM execution block 
Figure 3 illustrates the main execution block for running an ensemble member of the model, with a 
periodic check of the state of the members to apply the pruning mechanism. The code was adapted 
to handle the results of the dynamic analysis (run in parallel), to support running OpenIFS and 
FESOM2 in coupled mode. 

 

 
Figure 3. ESM dynamic workflow with the flow of data and events for the AWICM3 model. 
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The current implementation is able to run AWICM ensembles consisting of three start dates with 
TCO95L91-CORE2 configuration, using 336 cores distributed as follows: 

• OIFS_CORES=128 

• FESOM_CORES=144 

• RNFMAPPER_CORES=1 

The FESOM2 model was configured to use the COREII mesh, with a partition of 144 (distribution of 
the model mesh between CPUs).  

 

@on_failure(management='IGNORE') 
@mpmd_mpi(runner="srun", working_dir="{{working_dir_exe}}", fail_by_exit_value=True, 
programs=[ 
dict(binary="./fesom.x", processes=144, args=""), 
dict(binary="./master.exe", processes=128, args="-v ecmwf -e awi3"), 
dict(binary="./rnfmap.exe", processes=1, args="") 
]) 
@task(log_file={Type: FILE_OUT, StdIOStream: STDOUT}, working_dir_exe={Type: INOUT, Prefix: "#"}, 
to_continue={Type: IN, Prefix: "#"}, returns=int) 
def esm_coupled_simulation(log_file, working_dir_exe, to_continue): 
pass 

Figure 4. PyCOMPSs code to execute AWICM3 simulations. 

 

The complete code is located on GitHub repository, at: https://earth.bsc.es/gitlab/ces/eflows4hpc-
wp5/ 

4.3. Integration with HPCWaaS 
Another achievement was the creation of an application in Alien4Cloud to execute the ESM 
workflow. This involved modular containerization of workflow components and orchestrating them 
on HPC using a web interface (e.g, figure 5).  

 

 
Figure 5. PyCOMPSsJOB Tosca template in Alien4Cloud. 

https://earth.bsc.es/gitlab/ces/eflows4hpc-wp5/
https://earth.bsc.es/gitlab/ces/eflows4hpc-wp5/
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A Tosca template shown in figure 6 is used to execute the application on MareNostrum 4.  

 

tosca_definitions_version: alien_dsl_3_0_0 
 
metadata: 
  template_name: Esm2 
  template_version: 0.1.0-ESMDW_Coupled-SNAPSHOT 
  template_author: julian 
 
description: "" 
 
imports: 
  - yorc-types:1.1.0 
  - tosca-normative-types:1.0.0-ALIEN20 
  - alien-base-types:3.0.0 
  - pycomps.ansible:1.2.0-SNAPSHOT 
  - dls.ansible:1.1.0-SNAPSHOT 
 
topology_template: 
 inputs: 
    debug: 
      type: boolean 
      required: true 
      default: false 
      description: "Do not redact sensible information on logs" 
    target_host: 
      type: string 
      required: true 
      description: "the remote host" 
    user_id: 
      type: string 
      required: false 
      default: "" 
      description: "User id to use for authentication may be replaced with workflow input" 
    vault_id: 
      type: string 
      required: false 
      default: "" 
      description: "Vault id to use for authentication may be replaced with workflow input" 
  node_templates: 
    ESM_Workflow: 
      metadata: 
        a4c_edit_x: 5 
        a4c_edit_y: "-46" 
      type: pycomps.ansible.nodes.PyCOMPSJob 
      properties: 
        pycomps_endpoint: { get_input: target_host } 
        compss_module_version: eflows4hpc 
        num_nodes: 7 
        qos: debug 
        input_data_path: "/home/bsc32/bsc32044/awicm3_ensemble_alien4cloud/input" 
        output_data_path: "/home/bsc32/bsc32044/awicm3_ensemble_alien4cloud/output" 
        command: "/home/bsc32/bsc32044/awicm3_ensemble_alien4cloud/esm_simulation.py" 
        arguments:  
          - a0000001 
        container_image: "" 
        container_compss_path: "" 
        container_opts: "" 
        python_interpreter: python3 
        extra_compss_opts: "--qos=debug --exec_time=120 --keep_workingdir --

worker_working_dir=/home/bsc32/bsc32044/awicm3_ensemble_alien4cloud --worker_in_master_cpus=48 --num_nodes=7 --
pythonpath=/home/bsc32/bsc32044/awicm3_ensemble_alien4cloud:/apps/HECUBA/2.0/compss --
env_script=/home/bsc32/bsc32044/awicm3_ensemble_alien4cloud/set_esm_workflow_env.sh --
storage_props=/home/bsc32/bsc32044/awicm3_ensemble_alien4cloud/hecuba_lib/storage_props.cfg --
storage_home=/apps/HECUBA/2.0/compss" 

  workflows: 
    exec_job: 
      inputs: 
        user_id: 
          type: string 
          required: true 
        vault_id: 
          type: string 
          required: true 
        target_path: 
          type: string 
          required: true 
        source_path: 
          type: string 
          required: true 
        num_nodes: 
          type: integer 
          required: false 
          default: 1 
      steps: 
        PyCOMPSJob_submitting: 
          target: ESM_Workflow 
          activities: 
            - set_state: submitting 
          on_success: 
            - PyCOMPSJob_submit 
        PyCOMPSJob_submit: 
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          target: ESM_Workflow 
          operation_host: ORCHESTRATOR 
          activities: 
            - call_operation: tosca.interfaces.node.lifecycle.Runnable.submit 
          on_success: 
            - PyCOMPSJob_submitted 
        PyCOMPSJob_executing: 
          target: ESM_Workflow 
          activities: 
            - set_state: executing 
          on_success: 
            - PyCOMPSJob_run 
        PyCOMPSJob_executed: 
          target: ESM_Workflow 
          activities: 
            - set_state: executed 
        PyCOMPSJob_submitted: 
          target: ESM_Workflow 
          activities: 
            - set_state: submitted 
          on_success: 
            - PyCOMPSJob_executing 
        PyCOMPSJob_run: 
          target: ESM_Workflow 
          operation_host: ORCHESTRATOR 
          activities: 
            - call_operation: tosca.interfaces.node.lifecycle.Runnable.run 
          on_success: 
            - PyCOMPSJob_executed 

Figure 6. Tosca code for running the ESM dynamic workflow. 

 

This ESM dynamic workflow application is deployed and executed by using Alien4Cloud. Currently, 
it relies on files and directories that are hard-coded in the Tosca definition. For the next phase, these 
values will be parametrized, making it easier to share and re-use the application. The workflow 
additionally needs to implement a data logistics component to manage the input and outputs of 
model simulation for modularity. 

This application can then be deployed to any instance of Alien4Cloud. Authentication and 
authorization to execute a workflow on a HPC are handled by Alien4Cloud and it also uses a vault 
for credentials such as SSH keys used to safely communicate with the HPC platforms. Users are asked 
to provide a vault_id that corresponds to a secure SSH key to be used to run the ESM. 

4.4. Next steps towards the end of the project 
For the next and final phase of the project, we would like to accomplish the following list of tasks:  

- Consolidate the workflows by parameterizing the Tosca definition to promote re-use and 
portability of the ESM workflow application. 

- Add a workflow component to disseminate simulation data from HPC to public cloud storage 
service or DLS developed in WP2. 

- Benchmark the throughput of model data to Cassandra database via Hecuba and prepare 
manuscript for publication.  

- Refine the pruning of ensemble members for model tuning exercise of FESOM2, present the 
results at American Geophysical Union Fall Meeting 2023 and prepare the manuscript for 
publication. 

- Propose a session on HPC workflows for upcoming European Geophysical Union General 
Assembly 2024 to bring community working on workflows and share insights. 
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5. Feature extraction workflow 
The statistical analysis and feature extraction workflow of Pillar II integrates the ESM model 
execution together with HPDA and ML approaches for the analysis of extreme events (e.g., 
Heat/Cold Waves and Tropical Cyclones) based on the output of the ESM model simulation. 

 

 
Figure 7. General overview of the feature extraction workflow. 

 

The figure 7 shows a high-level overview of the main blocks integrated in the whole workflow that 
have been analyzed and described in the deliverable “D5.3 Pillar II - Iteration 1 Software Release”. 

This section provides a general outlook of the current state of implementation, and then describes 
the most relevant implementation details of the building blocks that have been developed during 
this phase. 

5.1. Detailed description of the workflow 
The schematization of three implementation use cases has been provided in “D5.3 Pillar II - Iteration 
1 Software Release”, where two main potential implementation use cases were defined. The first 
use case runs the feature extraction analysis (i.e., TC detection and Heat Waves analysis) on the 
CMCC-CM3 model data, already fully available on disk, while in the second all the pipelines 
(Deterministic and ML TC Detection blocks and Analytics block) are executed together with the ESM 
simulation.  

Since the second use case represents a more complete and complex scenario, it has included the 
first one, as shown in the following figure. 

 

 
Figure 8. High-level overview of the workflow for extreme climate events use case. The first use case is included in this one, starting 

from the 365 files produced by the model to the maps production. 
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The Pillar II statistical analysis and feature extraction workflow is organized in three main stages:  

• The deployment of the high-level workflow using Alien4Cloud and YORC 

• The management of the tasks by PyCOMPSs 

• The visualization of the results (NetCDF[13] files, maps, images). 

The PyCOMPSs job includes the following steps: 

1. Execution of the CMCC-CM3 model simulation 

2. As soon as the ESM output data becomes available, the data analytics and ML tasks run on 
the new yearly variables produced by the model: 

a. The HPDA-based extreme events analysis (i.e., Heat Waves and Cold Spells) 

b. The deterministic-based TC detection  

c. The ML-based TC detection  

3. The output of the analysis is then validated and stored on the disk  

4. Production of the output maps on the post-processing results. 

At runtime, PyCOMPSs generates a task-dependency graph as shown in figure 9 by analyzing the 
existing data dependencies between the tasks defined in the Python code.  

For the sake of clarity, the graph shows the execution of the workflow for a single year of simulated 
data; in case of multiple years, the whole graph will be repeated (with the exception of the first four 
tasks). More in detail, the figure shows the list of the PyCOMPSs routines declared in different 
python scripts in the modules folder: 

- The RunCMCCModel (blue circle) is the task responsible for the CMCC-CM3 simulation 
execution; 

- The OphImportClimAvg task (white circles) corresponds to the import of the climatological 
mean NetCDF file into Ophidia, while the “Stream4” associated to the red circle is useful to 
synchronize the following tasks that start only when the CMCC-CM3 data are available on 
disk; 

- The tasks from 5 to 14 are related to the Ophidia operators necessary to compute the 
Heat/Cold Wave Indicators; 

- The ML tasks (ComputePatches, InferencePhase and CreatePrediction) deal with the 
preprocessing step, detecting TC presence and localizing the TC center position; 

- The last three tasks (18, 19, 20) are responsible for the execution of the TSTORMS that starts 
only when the preprocessing step that aggregates the daily files into monthly files is finished 
thanks to the “Stream80” interface.  

All tasks along the X axis are executed in parallel and the “sync” blocks correspond to explicit 
synchronizations, while the other tasks have implicit synchronizations inside.  
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Figure 9. PyCOMPSs task-dependency graph for feature extraction workflow. 

 

The necessary inputs and outputs for the entire workflow have been summarized in the tables below 
in order to identify the blocks that can be portable to different computing infrastructures and that 
need some input files to be performed.  

It is important to underline that the CMCC-CM3 model runs on the CMCC supercomputer Zeus and 
is not portable to other infrastructures, so the idea is to separate the workflow into two sub-
workflows: 

• CMCC-CM3 model simulation: runs on Zeus and produce the daily files; 

• Post processing steps: run anywhere starting from the files produced by the model and made 
available on other computing infrastructures. 

 

 
Figure 10. Necessary inputs and outputs for the entire workflow. 
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The following subsections describe all the workflow stages in detail, along with the related 
PyCOMPSs tasks. 

5.2. ESM simulation block  
In the ESM simulation block the CMCC-CM3 climate model is used, as reported in the deliverable 
D5.3 “D5.3 Pillar II - Iteration 1 Software Release”, to produce the necessary files for the subsequent 
blocks. It represents task 1 in the PyCOMPSs graph. The main change made in this phase of the 
project concerns the use of the STREAM IN parameter for files implemented in the read_files task 
(red circle in the figure). This option allows to detect the files production progress and to poll the 
stream data from the other tasks. It is very useful because at the end of the simulation, all the daily 
CMCC-CM3 output files are copied to a directory that will be monitored using the PyCOMPSs 
streaming interface.  

 

  
Figure 11. PyCOMPSs task-dependency graph focused on CMCC-CM3 Simulation. 

 

The definition of the read_files task is shown in the code below in which the list_files array 
represents the list of all daily files making up the new year. 

@task(fds=STREAM_IN, returns=list) 
def read_files(fds): 
    num_total = 0 
    list_files = [] 
    while num_total < 365: 
        # Poll new files 

        new_files = fds.poll() 
        # Process files 
        for nf in new_files: 
            list_files.append(str(nf)) 
        # Accumulate read files 
        num_total = len(list_files) 
        # Sleep between requests 
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        time.sleep(SLEEP) 
    # Return the number of processed files 
    return list_files 

 

5.3. Data analytics for extreme events analysis 
The data analytics block of the workflow is responsible for the computation of multiple extreme 
climate events indicators exploiting the Ophidia framework for HPDA. The multiple indicators 
computed in this stage for Heat Waves and Cold Spells are summarized in the following table taken 
from the deliverable “D5.3 Pillar II - Iteration 1 Software Release”. 

 
Table 1. List of extreme events indices computed by the workflow. 

Index Name Description 

HWD Heat Wave 
Duration 

Starting from the daily maximum temperature (TSMX), the Heat Wave Duration 
index is the maximum number of days at intervals of at least 6 days with TSMX > 5°C 
+ baseline 
BASELINE: Average calculated for each calendar day (based on 20 years) using a 
current 5-day window 

CWD Cold Wave 
Duration 

Starting from the daily minimum temperature (TSMN), the Cold Wave Duration 
index is the maximum number of days at intervals of at least 6 days with TSMN < 5°C 
+ baseline 

HWN Heat Wave 
Number 

Number of heatwaves in a year 

CWN Cold Wave 
Number 

Number of coldwaves in a year 

HWF Heat Wave 
Frequency 

Number of days that contribute to heatwaves in a year 

CWF Cold Wave 
Frequency 

Number of days that contribute to coldwaves in a year 

 

To compute these indicators, the variables TSMX (Maximum surface temperature) and TSMN 
(Minimum surface temperature) are used.  

Figure 12 provides a schematic representation of the internal steps computed in this block. The main 
change made in this phase of the project involves the use of the PyCOMPSs API function 
compss_file_exists(*file_name) that is able to check if a file or files exist. This mechanism allows to 
simplify the procedure, because if the climatological mean NetCDF file is available, the green step 
in the figure for the Climatological mean computation will be reduced in a simple import into 
Ophidia of this file.  
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Figure 12. Internal steps for the HPDA-based extreme events analysis block. 

 

As soon as a new file is produced from the ESM simulation, the Heat Waves and Cold Spell events 
are extracted from the files making use of some Ophidia operators (for reduction, intercomparison, 
etc.).  

PyCOMPSs is used to perform the Ophidia pipelines concurrently on different input files and 
orchestrates the execution of the various operators, as shown in the graph below. 

 

 
Figure 13. PyCOMPSs task-dependency graph focused on Data Analytics. 

 

5.4. Detecting Tropical Cyclones in ESMs simulations 
The Machine Learning workflow extracts significant spatial features related to the presence of TCs 
in gridded climate data. This allows recognition, in an end-to-end fashion, of whether a TC is present 
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or not given a set of input climate variables that are related to TCs cyclogenesis and sustainment 
during their lifecycle. From a logical point of view the TC detection workflow is based on two 
subsequent steps: (i) classification and (ii) localization. 

The former allows classification of whether a TC is likely to occur given input data, whereas the latter 
allows one to effectively localize the geographical coordinates of the TC. Practically, both 
classification and localization steps are embedded into a comprehensive end-to-end detection task 
which has been addressed through the use of VGG-like Artificial Neural Network (ANNs) 
architectures. VGGs exploit deep convolutions to extract high-level spatial features from multi-
dimensional gridded data with the aim of predicting, when a TC has been detected, the geographical 
coordinates of the TC center. 

The ML-enabled TCs detection workflow is made up of two distinct phases: training and inference. 
While the training phase trains VGGs for detection on historical reanalysis data (i.e., ERA5), the 
inference phase exploits pre-trained VGGs to infer the presence or absence of TCs in global model 
simulation data (i.e., CMCC-CM3), thus providing an indication of their global geographical 
occurrence in the future. 

5.4.1. Training phase 
As described in D5.3, the ML training workflow for TCs detection comprises three consecutive 
stages. Stage 1 involves the collection of all data sources required to set up the ML models training 
for the detection task. In this stage some pre-processing steps are also performed, such as patch 
generation and labeling, augmentation (i.e., left-right flip, up-down flip and 180° rotation) and 
feature scaling. Stages 2 and 3 are related to classification and localization tasks, respectively. As 
previously described, these stages are logically separated but from a ML perspective they are jointly 
performed in an end-to-end way. Indeed, VGG models are trained to predict the geographical 
coordinates of the TC center if it is detected in input patches, otherwise negative labels are provided 
as output. From ERA5, 4 input drivers related to the Tropical Cyclone (TC) formation have been 
identified: 10m wind gust since previous post-processing (fg10), temperature at 500 mb (t_500), 
temperature at 300 mb (t_300) and mean sea level pressure (msl). These variables were gathered 
from ERA5 single levels and ERA5 pressure levels datasets (0.25° x 0.25° on regular grid). Information 
about TC position and development have been gathered from the International Best Track Archive 
for Climate Stewardship (IBTrACS). 

The main contributions with respect to D5.3 are:   

• Improved IBTrACS filtering: selection of 6-hourly records belonging to Tropical Storm (TS), 
Extratropical (ET) and Subtropical (SS) categories occurring in the joint North Pacific and 
North Atlantic formation basins (100−320 °E, 0−70 °N); 

• Data is converted from NetCDF into a TensorFlow[14] compliant data format (i.e., tfrecord) 
which allows faster I/O operations, as well as enabling faster training on GPUs. Indeed, 
tfrecords allow improving the training execution time by a factor of 3 over using Numpy[15] 
arrays (about 3 hours to train a VGG-line ANN with tfrecords); 

• Training and Validation datasets now include: 

o Patches containing a TC associated with the corresponding coordinates of the TC 
center (positive patches); 

o For each positive patch, the three corner patches closest to the storm center were 
considered and labeled with negative coordinates (i.e., [-1,-1]) (negative patches); 
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o For each positive patch, a further negative patch was randomly selected among the 
7 × 22 patches of the map excluding the previously mentioned, additionally ensuring 
that no major TC phenomena occur in the randomly selected patch. 

• Improved augmentation of gridded data: training and validation patches undergo data 
augmentation (i.e., left-right flip, up-down flip and 180° rotation) which is performed on the 
fly, avoiding storing the augmented version of data on the storage system; 

• New evaluation metrics: performance on out-of-sample data is evaluated by using 
classification metrics, such as False Positives (FPs), False Negatives (FNs), True Positives (TPs) 
and True Negatives (TNs), as well as localization metrics, such as the average Euclidean 
distance between correctly identified TCs (TPs) and observations from IBTrACS;  

• A total of 13 models have been trained and fine-tuned for the detection task on historical 
data, as well as their classification and localization metrics on the test set (see Table 2).  

o A lower number of FNs is preferable for the task of predicting the occurrence of such 
extreme events, because FNs correspond to observed TCs that are not cor-rectly 
identified by the ML model; 

o However, the Euclidean distance between the observed and predicted TCs center is 
in trade-off with respect to FNs, the higher the former the lower the latter and vice 
versa; 

o To this extent a total of 13 models have been trained and tested, each one with a 
different balance between Euclidean Distance and FN rate. Model #10 should be se-
lected for an accurate localization of TCs center (112.81 km on average), whereas 
model #7 for minimizing the occurrence of FNs (9.13 % on average) at the expense 
of the localization accuracy which increases to 190.16 km. A bal-anced behavior is 
provided by model #5 with an average Euclidean Distance of 143.59 km which is 
about lower by 50 km than model #7, at the expense of the FN rate which increases 
from 9.13 % (model #7) to 13.60 %. 

 
Table 2. List of trained VGG-line ANNs on historical data. The average Euclidean distance between predicted and actual TC center 

coordinated on the test set was reported, along with classification rates. 

Mo
del 
#  

Euclidean 
distance 
(km) 

FP rate (%) TP rate (%) FN rate (%) TN rate (%) 

1 143.48 7.61 85.27 14.73 92.39 

2 188.94 23.00 90.78 9.22 77.00 

3 190.66 17.93 90.81 9.19 82.07 

4 124.96 3.78 73.36 26.64 96.22 

5 143.59 7.70 86.40 13.60 92.30 

6 193.02 16.28 90.23 9.77 83.72 

7 190.16 21.32 90.87 9.13 78.68 

8 129.88 4.53 74.84 25.16 95.47 
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9 133.48 3.30 77.26 22.74 96.70 

10 112.81 3.46 77.46 22.54 96.54 

11 114.41 3.55 76.34 23.66 96.45 

12 114.13 3.74 75.27 24.73 96.26 

13 115.47 3.73 73.68 26.32 96.27 

 

5.4.2. Inference phase 
ML model inference is performed on climate projections provided by the CMCC-CM3 numerical 
model. To this end, 6-hourly projection data has been collected and used. As a preliminary step, the 
correspondence between ERA5 variables, used in the training phase, and those simulated by the 
CMCC-CM3 numerical model was established. This correspondence is reported in Table 3. 

 
Table 3. Correspondence between ERA5 variables used in the training phase and those simulated by the CMCC-CM3 numerical 

model. 

Variable Name Unit ERA5 
Name 

CMCC-CM3 
Name 

10 m wind gust since previous post-
processing 

m/s fg10 WSPDSRFMX 
 

temperature at 500 mb  K t_500 T500 

temperature at 300 mb K t_300 T300 

mean sea level pressure Pa msl PSL 

 

CMCC-CM3 data has been regridded onto a 0.25° x 0.25° grid to match the same spatial resolution 
of ERA5 data. Then, each map was tiled into non-overlapping patches of size 40 x 40 pixels. Variable 
patches were then stacked together, resulting in objects of size 40 x 40 x 4. Then, patches were 
normalized in the [0,1] range by using the same scaler computed on the training set. Such data is 
then fed into the ML model to detect TCs on simulation data.  

Figure 14 shows the PyCOMPSs task-dependency graph for the ML-enabled TC detection. 
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Figure 14. PyCOMPSs task-dependency graph focused on ML TC detection. 

 

5.4.3. Deterministic TC detection 
The integration of the TSTORMS tool for the deterministic TC detection in the overall PyCOMPSs 
workflow represents one of the most relevant implementation advances that have been developed 
during this phase. 

 

 

 
Figure 15. PyCOMPSs task-dependency graph focused on TSTORMS TC detection. 

 



 
D5.4 Pillar II - Iteration 2 Software Release 
Version 1.0 
 

 
22 

As shown in the figure 15, the TC detection via a deterministic approach is integrated using two 
PyCOMPSs tasks:  

• The first RunTSTORMSDriver starts only if the CMCC-CM3 model has produced the new daily 
files. It is useful to aggregate the daily files in order to produce monthly files and execute the 
TSTORMS driver using them to detect the tropical cyclones points; 

• The second one, RunTrajAnalysis, is responsible for the trajectory analysis to keep the infor-
mation on all years. Basically, this task joins the cyclones points. 

The STREAM_IN option has been used also in this case (orange circle) to wait on the TSTORMS files 
creation before running the trajectory analysis task that uses these files. 

The following code is related to the declaration and the invocation of the RunTSTORMSDriver task 
and the read_monthlyfiles task that implements the PyCOMPSs streaming interface. 

 

@binary(binary="runTSTORMS.py") 
@task(files=COLLECTION_IN) 
def RunTSTORMSDriver(str_files, files): 
    pass 
# TSTORMS execution 
        RunTSTORMSDriver(str(listfiles),listfiles) 
        print("[LOG] TSTORMS EXECUTION") 
        tstormsfiles = read_monthlyfiles(fds1,year) 
        # Sync and print value 
        tstormsfiles = compss_wait_on(tstormsfiles) 
        print("[LOG] PROCESSED TSTORMS FILES: " + str(tstormsfiles)) 

 

5.5. Testbed setup 
Zeus is one of the HPC machines available at the CMCC supercomputing center1. It provides 1.2 
PetaFlops of peak performance and is composed of 348 nodes with a total of 12,528 processors and 
33.4 TB of main memory. Each node is equipped with 2 Intel Xeon Gold 6154 3.0 GHz processors (18 
cores each) and 96 GB of main memory, with Linux CentOS 7.6 used as the operating system. The 
cluster exploits a GPFS parallel file system with a peak aggregated bandwidth of 80 GB/s and IBM 
Spectrum LSF as scheduling system. 

5.6. Integration with HPCWaaS 
Alien4Cloud is a tool that provides self-service deployment, composition and execution of complex 
applications by means of application architectures described in the TOSCA Simple Profile in YAML 
specification.  

                                                      
1 CMCC SuperComputing Center: https://www.cmcc.it/super-computing-center-scc  

https://www.cmcc.it/super-computing-center-scc
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Figure 16. PyCOMPSs workflow architecture in Alien4Cloud. 

 

The figure 17 shows the definition of the Tosca configuration file for the YORC technology to support 
the deployment of the workflow and its execution on different infrastructures. 

The main parameters concern: 

● the environment endpoint corresponding to the Zeus supercomputer so a VPN connection 
has been established between Zeus at CMCC and the machine hosting Alien4Cloud.  

● the extra_compss_opts in the submission params in which are defined all the options 
needed by the command enqueue_compss to execute the PyCOMPSs workflow.   

● the application arguments in which are defined all the arguments required for the python 
script. 

● the application command corresponding to the entire path of the PyCOMPSs workflow.  

The code of the feature extraction workflow is available at: 

 https://github.com/eflows4hpc/workflow-
registry/tree/main/PillarII/feature_extraction_wf/feature_extraction 

 

https://github.com/eflows4hpc/workflow-registry/tree/main/PillarII/feature_extraction_wf/feature_extraction
https://github.com/eflows4hpc/workflow-registry/tree/main/PillarII/feature_extraction_wf/feature_extraction
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Figure 17. TOSCA template for feature extraction workflow. 

 

5.7. Next steps towards the end of the project 
There are two main steps towards the end of the project, as stated in the previous deliverable. The 
first step concerns the finalization of the scientific workflow and its improvement in terms of 
performance. In particular, the activities are: 

● Comparison between the TC detection approaches and the validation of the results. 

● Testing of the workflow results with respect to other state-of-the-art methodologies 

The second step is about the full integration of the workflow into the eFlows4HPC software stack. 
In particular, this includes: 

● Integration of the Data Logistics Service (DLS) for managing data movement between differ-
ent computing infrastructures. 
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● Publication of the workflows on the project workflow registry. 

 

6. Conclusions 
This document described the activities performed during the Iteration 2 - Phase 3 of the eFlows4HPC 
project in order to support the two planned workflows for climate datasets analysis. The activities 
led to complete workflows in both cases, supported by the eFlows4HPC software stack. Further 
refinements and final optimizations still need to be made to achieve final releases of fully 
operational and validated workflows; this aspect will be addressed in the Iteration 2 – Phase 4 of 
the project.  

 

7. Acronyms and Abbreviations 
A4C – Alien4Cloud 

ANN - Artificial Neural Network 

API – Application Programming Interface 

CPU – Central Processing Unit 

DLS - Data Logistics Service 

ESM – Earth System Model 

GPU – Graphic Processing Unit 

HPC – High Performance Computing 

HPCWaaS – HPC Workflow as a Service 

HPDA – High Performance Data Analytics 

IBTrACS - International Best Track Archive for Climate Stewardship 

ML – Machine Learning 

SSH – Secure SHell 

TC – Tropical Cyclone 

TSMN - Minimum surface temperature 

TSMX - Maximum surface temperature 

TOC – Table Of Contents 

VGG - Visual Geometry Group 

VPN – Virtual Private Network 

YAML - YAML Ain't Markup Language 
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