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1 Executive Summary 
This report presents a detailed evaluation of the eFlows4HPC project's Pillar II, focusing on the 
development and validation of advanced workflows for Earth System Models (ESMs) in High-
Performance Computing (HPC) environments. It covers the implementation of dynamic ESM 
simulation and analysis workflows, incorporating innovative techniques like in-memory data 
handling, ensemble pruning, and high-performance data analytics. The validation process 
underscores the workflows' adaptability, fault tolerance, and efficiency in handling large-scale, 
data-intensive tasks. Through comprehensive assessments, including external evaluations, the 
report highlights the effectiveness of these workflows in practical ESM applications and 
acknowledges the challenges faced, particularly in integrating machine learning and managing vast 
data volumes in HPC settings. The findings suggest significant enhancements in ESM simulations, 
showcasing the potential of these workflows in advancing climate modeling and analysis, while 
also pointing towards future avenues for improvement in technology integration and optimization. 

 

2 Introduction 
High-performance computing (HPC) has been an integral tool for advancing our understanding of 
atmospheric and oceanic processes. Over time, it has expanded to encompass Earth System 
Models, enabling comprehensive simulations that capture the processes within our planet's 
systems. These simulations stand out as one of the most demanding applications of HPC, not solely 
because of the immense computational resources they require. They also pose unique challenges, 
such as managing intensive input/output operations, handling vast volumes of data, and the 
necessity to process and analyze the data within the same computational environments where it 
is generated. The advanced workflows of Pillar II have addressed key challenges in ESM simulations 
on HPC, enhancing data handling, I/O efficiency, and on-site data analysis, potentially leading to 
more robust and insightful simulations.  

2.1 Purpose and Scope of the Report 
Pillar II addresses several critical steps in the ESM workflow, namely dynamic data analysis during 
the model run, and feature extraction during the post-processing phase. In this deliverable, we will 
describe the fundamental components of the resulting workflows, perform their validation, and 
evaluate them against the criteria established at the beginning of the project (Deliverable 5.1). 

2.2 Outline 
We begin by establishing the Workflow Requirements and Validation Methodology, presenting 
an overview of the initial requirements and the metrics for assessment in Section 3. The core of 
the report lies in the validation sections, with Section 4 delving into the Dynamic ESM Simulation 
Workflow Validation, including specific use case applications and the validation process itself, as 
well as external evaluation. Section 5 mirrors this structure for Analysis and Feature Extraction 
Validation. The document ends with conclusions and recommendations in Section 6. 
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3 Workflow Requirements and Validation 
Methodology 

At the start of the eFlows4HPC project, we analyzed standard ESM workflow steps and identified 
general functional and non-functional requirements and metrics to evaluate the quality of the 
resulting Pillar II workflows (Deliverable 5.1). This section details the initial set of these 
Requirements and Metrics, which will inform the evaluation in the subsequent sections. 

The framework presented here includes criteria selected for their relevance to the workflows' 
performance and reliability. The following sections will apply this framework to assess whether 
the workflows meet the project's objectives, focusing on their practical application within the ESM 
domain. 

3.1 Overview of Initial Requirements and Metrics 
Taking into account information on building blocks and requirements of the ESM workflow and its 
components described above, in this section we provide the general functional and non-functional 
requirements. The keywords in the priority column are defined according to the RFC 2119 [1].  

 
Table 1. Requirements of the ESM workflow and its components. 

ID Name Description Priority 

1 Execution 
Robustness 

Management of fault tolerance during the workflow execution 
including checkpoints or retries. For example, during a large 
execution if a node fails, the workflow must be able to recover and 
continue to the end. 

Should 

2 Portability  Workflow components should be portable to various types of HPC 
infrastructures. 

Should 

3 Integrated 
workflow 
management 

Requires the Management of task dependencies, execution of 
parallel simulations on different HPC infrastructures, management 
of batch jobs (submission, monitoring, cancellation), management 
of conditional paths in a transparent way. 

Must 

4 Integration 
with long-term 
archive/reposi
tory storage  

Results may be stored in long-term storage for archiving purposes, 
second use (e.g. downstream services) and/or to satisfy FAIRness 
policies. 

May 

5 Workflow 
adaptability 

Capability to easily manage, cancel, replace and add components 
invocations in the workflow, for instance allowing the execution 
starting from the n-th step. 

Should 

 
6 

Access to 
intermediate 
in-memory 
results 

The workflow should be able to retrieve data/intermediate 
outputs of the running processes directly from memory. 

Must 

 
7 

AI integration 
for ensemble 

Support for applying Machine Learning techniques on 
intermediate data of running members to compute the members 

Should 
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member 
pruning 

that will be discarded at a given step of the simulation.  

8 ML/DL 
capabilities 

Requires the support for training and inference of Neural Network 
models for example for Tropical Cyclone detection. 

Must 

9 DA capabilities Support for descriptive analytics (e.g., statistical analysis) 
exploiting fast in-memory analysis. 

Must 

10 High 
Performance 
Computing 
support 

Climate models have to be executed on computing infrastructures 
capable of providing a large amount of processing and memory 
resources. 

Must 

11 Multi-member 
analysis 

Support for concurrent execution of sub-workflows starting from 
different inputs (configurable) and comparison of the sub-
workflows results. 

Must 

 

In line with the requirements, best practices in code development and quality are essential. 
Testing, and in particular continuous integration testing, should be part of the development cycle 
to catch errors in the workflow. Inline documentation aids workflow developers in understanding 
and adjusting the code. Clear deployment guides and user manuals are important for easy 
installation on new HPC systems and for user adoption of the workflows. 

Building on the foundation of these requirements and best practices, we also perform quantitative 
evaluation of the workflows’ success. The subsequent evaluation will employ a defined set of 
metrics originating from the initial phase of the eFlows4HPC project. Selected for their relevance 
to the development and operation of workflows, these metrics will quantify aspects such as 
maintainability, usability, and efficiency. They serve as benchmarks for the assessment, reflecting 
the project's targets in terms of performance, scalability, and resource utilization. The following 
table offers a synopsis of these metrics, each with a specific role in the evaluation process, 
providing a framework for a detailed analysis of the workflows. 

 
Table 2. Metrics for evaluation of ESM workflows. 

Acronym Name Description Area 

LoC Lines of Code Number of Lines of code in the workflow 
implementation. 

Development 
& 
Maintenance 

DoP Degree of Portability Percentage of workflow components that can be 
reused in other infrastructures and workflows. 

Accessibility & 
Deployment 

DT Deployment Time  Time elapsed to deploy the workflow. Accessibility & 
Deployment 

ET Execution Time Time elapsed to execute a workflow. Performance 

SU Speed-up Execution time improvement when running with 
larger resources.  

Performance 
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Eff Efficiency  Execution time degradation when running larger 
problems.  

Performance 

IOT I/O Time Percentage of Execution time performing I/O 
operations.  

Data 
Management 

FTC Fault-tolerant 
components 

Percentage of workflow components that are fault-
tolerant. 

Reliability 

CH Core/Hour Number hours of a CPU Core consumed by the 
workflow execution.  

Energy & Cost 

EC Energy Consumption Energy consumed (Wh or Joules) associated with a 
workflow execution. 

Energy & Cost 

AR Accuracy of the 
results 

Accuracy of scientific results should not degrade. Pillar II 
specific 

SYPD Simulated years per 
day 

Throughput of ESM simulations.  Pillar II 
specific 

 

4 Dynamic ESM simulation workflow Validation 
4.1 Workflow Use Case Applications 
The dynamic ESM simulation workflow integrates dynamic access to model results and online-
based approaches to prune ensemble simulation members during the model execution, with the 
aim of saving resources. Unlike other standard ESM workflows which do not take into account such 
on-the-fly decisions based on the generated simulation data from multiple members, this dynamic 
workflow supports such features thereby proving to be efficient in resource utilization. Moreover, 
It is available in Alien4Cloud, the web entry point for the workflow, which helps run the workflow 
with specified parameters over the web interface and abstracting the complexity of workflow 
initialization at the same time. 

 

 
Figure 1. Alien4Cloud screenshot of the ESM_Workflow topology. 
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Figure 1 shows the TOSCA workflow topology deployed to the Alien4cloud web application. It 
launches the main workflow Bash Shell script which subsequently loads the required dependencies 
and modules. Lastly, it calls a PyCOMPSs command (enqueue_compss), ultimately running the 
Python code for ESM simulation on an HPC platform. 

The workflow topology allows the user to pass parameters that define the simulation 
configuration. Parameters available to the eFlows4HPC user are the HPC platform, list of start 
dates, number of ensemble members, number of cores to be allocated, and number of cores per 
node. The screenshot in Figure 2 demonstrates a sample run configuration on the MN4 as the HPC 
machine, with the start date 1948, 144 as number of cores, and 48 cores per node as computing 
resources—which results in 3 nodes being allocated for this simulation submission (144 divided by 
48). 

 

 
Figure 2. Simulation run configuration, with user provided parameters to control the model configuration. 

 

An intermediate step is handled by scripts written in Bash Shell and Python. These scripts are called 
by Alien4Cloud and are responsible for validating the user input, loading the required 
configuration, and preprocessing the model Fortran namelists (which hold configuration values 
that control input and features of the model). The scripts and the PyCOMPSs workflow definition 
are both versioned under Git, and available in the eFlows4HPC workflow registry1. 

In Figure 3 we show all the parts of the dynamic ESM simulation workflow. A user request to start 
the simulation in Alien4Cloud (1) launches the Bash Shell script remotely in MN4 via SSH. The Bash 
Shell script validates user input, and calls enqueue_compss, a PyCOMPSs utility that starts the 
workflow (2). One of the tasks in the workflow preprocesses Fortran namelists, replacing variables 
and creating the random values for the ensemble members (random perturbation) and saves it to 
the disk for the model (3). Another task is responsible for launching FESOM2 using MPI via the srun 
Slurm utility (4). The workflow launches one FESOM2 task for each ensemble member. 

 
1 https://github.com/eflows4hpc/workflow-registry 
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Figure 3. Illustration of all the parts of the dynamic ESM simulation workflow. 

 

FESOM2 reads the preprocessed Fortran namelists that contain paths, and parameters provided 
by the user that determines the data that is used to start the simulation (input, initial conditions, 
meshes, simulation parameters and output variables). FESOM2 writes requested output variables 
at requested frequency to the Cassandra database using the Hecuba API (5). The data written by 
FESOM is retrieved by another PyCOMPSs task responsible to evaluate whether ensemble 
members must be pruned or not (6). This task is responsible for ML/AI component used to back 
propagate the changes in timestep when simulation is unstable. Most parts of the execution create 
logs on the disk in MN4, which are available to the user during the simulation via the Alien4Cloud 
web interface (7), and after the simulation as they are stored in the HPC platform on a path 
configured by the user. 

The simulations executed on MN4 used the FESOM2 “pi” test mesh, and the “core2” mesh (meshes 
are described in the deliverable “D9.2 Data Management Plan version 3.0”, under “Data 
Summary”). The resources used for these simulations were, respectively, 1 node with 2 cores, and 
3 nodes with 144 cores. FESOM2 does not output NetCDF, as, instead, it writes to an instance of a 
Cassandra database managed by Hecuba and pyCOMPSs (as illustrated in Figure 3). It is important 
to note that the model is not compiled during the workflow execution. Instead, the workflow uses 
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a pre-compiled version of FESOM2 on MN4, from the FESOM2 public repository Git branch 
eflows_hecuba_templates_update2. 

For pruning, a pyCOMPSs task is initialized with the rest of the workflow, and is responsible to call 
the code that analyzes the status of ensemble members and mark them to be pruned or not. To 
mark an ensemble member to be pruned, the task changes a flag in the Cassandra database. Doing 
that, the next time the FESOM2 model queries the database, it also checks for the flag and if it 
corresponds to the ensemble member being pruned the model stops, as seen in Figure 4. 

 

 
Figure 4. Pruning an ensemble member task called from the terminal. 

 

4.2 Requirements validation 
The table of this section is a copy of Table 1 from section 3.1 “Overview of Initial Requirements 
and Metrics”, with the additional column “Status”. This new column contains the validation status 
for each requirement in the context of the Dynamic ESM simulation workflow. 

 
Table 3. Dynamic ESM simulation workflow requirements validation 

ID Name Description Priority Status 

1 Execution 
Robustness 

Management of fault 
tolerance during the 
workflow execution 
including checkpoints or 

Should Implemented via pyCOMPSs fault-
tolerance feature3 and FESOM2’s 
ability to checkpoint and restart the 
simulations. 

 
2 https://github.com/FESOM/fesom2/tree/eflows_hecuba_templates_update 
3 
https://pycompss.readthedocs.io/en/stable/Sections/09_PyCOMPSs_Notebooks/syntax/3.4_Defining_classes_and_
objects-with-fault-tolerance.html 
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retries. For example, 
during a large execution 
if a node fails, the 
workflow should be able 
to recover and continue 
to the end. 

2 Portability  Workflow components 
should be portable to 
various types of HPC 
infrastructures. 

Should Implemented with Singularity 
containers deployed in MN4, Spack 
specification for installing all 
necessary dependencies on any 
HPC and modular configuration 
implemented in Bash Shell and 
Python scripts4. 

3 Integrated 
workflow 
management 

Requires the 
Management of task 
dependencies, execution 
of parallel simulations 
on different HPC 
infrastructures, 
management of batch 
jobs (submission, 
monitoring, 
cancellation), 
management of 
conditional paths in a 
transparent way. 

Must Implemented with pyCOMPSs, and 
parametrization of Alien4Cloud 
application and of Bash Shell and 
Python scripts. 

4 Integration with 
long-term 
archive/repository 
storage  

Results may be stored in 
long-term storage for 
archiving purposes, 
second use (e.g. 
downstream services) 
and/or to satisfy 
FAIRness policies. 

May Through the use of Hecuba and a 
Cassandra database, results can be 
stored in a large persistent 
database, or transferred to other 
locations such as cloud storage. 

5 Workflow 
adaptability 

Capability to easily 
manage, cancel, replace 
and add components 
invocations in the 
workflow, for instance 
allowing the execution 
starting from the n-th 
step. 

Should Implemented through 
parametrization of PyCOMPSs 
workflow, where resources, model 
configuration and analysis can be 
changed. 

 
6 

Access to 
intermediate in-
memory results 

The workflow must be 
able to retrieve 
data/intermediate 
outputs of the running 
processes directly from 

Must Access to in-memory data is 
provided with a numpy-like array 
view using HECUBA, and is further 
abstracted using Dask9 arrays and 
xarray7 for efficient access.  

 
4 https://github.com/eflows4hpc/workflow-registry/blob/main/Pillar_II/esm/README.md 
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memory. 

 
7 

AI integration for 
ensemble 
member pruning 

Support for applying 
Machine Learning 
techniques on 
intermediate data of 
running members to 
compute the members 
that will be discarded at 
a given step of the 
simulation.  

 
Should 

AI technique is used to adaptively 
change the time step for each 
ensemble member . Pruning is done 
based on the stability of each 
ensemble member.  

8 ML/DL capabilities Requires the support for 
training and inference of 
Neural Network models 
for example for Tropical 
Cyclone detection. 

Must Choice of representing the in-
memory data numpy-like format 
makes it amenable to many AI/ML 
methods and tools. 

9 DA capabilities Support for descriptive 
analytics (e.g., statistical 
analysis) exploiting fast 
in-memory analysis. 

Must Choice of representing the in-
memory data numpy-like format 
makes it amenable to extensive 
statistical functions of Numpy and 
SciPy. Additionally, use of Dask9 
arrays paves way for an efficient 
and scalable analysis. 

10 High Performance 
Computing 
support 

Climate models have to 
be executed on 
computing 
infrastructures capable 
of providing a large 
amount of  processing 
and memory resources. 

Must Climate model is containerized and 
has environments defined for 
numerous HPC environments. 
PyCOMPSs workflows are tested on 
MN4 and on Levante with Slurm. 

11 Multi-member 
analysis 

Support for concurrent 
execution of sub-
workflows starting from 
different inputs 
(configurable) and 
comparison of the sub-
workflows results. 

Must With the parametrization that was 
pending in the previous deliverable 
we are now able to have multiple 
users starting simulations 
concurrently, re-using the same 
input data and model binaries and 
containers. 

 

The dynamic ESM simulation workflow code has been written with an IDE that provides a free code 
inspection tool (JetBrains PyCharm), and other non-functional requirements such as coding best 
practices have been followed. For example, the project uses ShellCheck and bats for static analysis 
and unit tests for Bash Shell scripts. And it uses Mypy for type checking and Pytest for unit tests in 
Python. The current code coverage is at 76.59%. These tools are executed in continuous 
integration for every commit to the workflow using GitHub Actions. Finally, the workflow folder in 
GitHub includes a README.md with documentation with general information about the workflow, 
instructions to build, run, and troubleshoot the workflow. 
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● Execution robustness: The use of PyCOMPSs provides fault tolerance by capturing error 
codes from failed tasks and facilitating their re-execution. Similarly, the FESOM2 model 
enables the periodic saving of the model's state, called restarts, at user-defined intervals 
in its namelist. This feature allows for the resumption of execution from the last saved 
state. In the event of a failure, the PyCOMPSs workflow initiates task retries, and the 
FESOM2 model resumes the simulation from the last saved checkpoint, thereby ensuring 
continuity and eliminating the loss of progress. 

● Portability: It is achieved by containerizing the  workflow, including all applications of the 
workflow. Containerizing the entire workflow is done using the HPCWaaS service provided 
by eFlows4HPC. This service employs Spack specifications 
(https://github.com/eflows4hpc/software-catalog/tree/main/packages) to construct 
containers in the Singularity format tailored for specific HPC targets. As a result, it ensures 
compatibility with MPI-runtime environments and facilitates secure deployment on the 
intended HPC systems. While the A4C framework, in conjunction with Yorc, enables 
deployment and execution on chosen architectures, it has been primarily tested on the 
MN4 system. Additionally, the applications have been independently verified and 
constructed using consistent methodologies on the Levante HPC at the German Climate 
Computing Center and local linux desktop development environments. 

● Integrated workflow management:  PyCOMPSs is instrumental in initiating and managing 
essential components such as Cassandra, which is crucial for storing and handling the 
simulations' in-memory data, simulations and analysis tasks. At the outset of each 
simulation, PyCOMPSs is responsible for bootstrapping Cassandra, ensuring that the 
database is up and running to accommodate the data influx from the simulations.  

● Integration with Long-term Archive/Repository Storage: The dynamic Earth system model 
(ESM) simulation workflow incorporates a generic and extendable strategy. Specifically, the 
inputs required for model simulations—categorized broadly into initial conditions, forcing, 
and mesh—are archived in cloud storage available at 
swift.dkrz.de.https://swiftbrowser.dkrz.de/public/dkrz_035d8f6ff058403bb42f8302e6ba
dfbc/eflows4hpc/ 

 

 
Figure 5. Input datasets stored on DKRZ’s swift storage, these can be downloaded on-the-fly in any workflow to start simulations 

using FESOM2. 

 

These input datasets can be accessed using a Python function as part of the pre-simulation task 
within the PyCOMPs workflow. (PyCompss task figure follows).  

Similarly, simulation outputs are archived in a designated cloud storage container, systematically 
organized by simulation ID, time step, and spatial chunk. This approach not only facilitates the 
parallel uploading of data required for subsequent analysis but also adopts a format akin to the 

https://swiftbrowser.dkrz.de/public/dkrz_035d8f6ff058403bb42f8302e6badfbc/eflows4hpc/
https://swiftbrowser.dkrz.de/public/dkrz_035d8f6ff058403bb42f8302e6badfbc/eflows4hpc/
https://swiftbrowser.dkrz.de/public/dkrz_035d8f6ff058403bb42f8302e6badfbc/eflows4hpc/
https://swiftbrowser.dkrz.de/public/dkrz_035d8f6ff058403bb42f8302e6badfbc/eflows4hpc/
https://swiftbrowser.dkrz.de/public/dkrz_035d8f6ff058403bb42f8302e6badfbc/eflows4hpc/
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Zarr data format. This choice enhances the ease of data integration and analysis in Python by a 
broader scientific community. 

 

 
Figure 6. Illustrates workflow task to download necessary input data required for FESOM2 simulation from a cloud store before 

simulation. 

 

 
Figure 7. Illustrates workflow task to upload the simulation results to cloud storage either during simulation or at the end of the 

simulation. 



 

14 

 

D5.5 Pillar II - Validation and Evaluation 
Version 1.0 

● Workflow adaptability: This requirement emphasizes the flexibility to modify the workflow 
in response to changes in model configurations, such as alterations in resolution, or 
adjustments in analysis procedures. It also pertains to the workflow's capacity to operate 
effectively with variations in data volume during input/output (IO) operations. The 
workflows have been evaluated for their robustness with increase in IO frequency and 
when applied to model configurations of higher spatial resolution. Moreover, the 
procurement of required inputs for higher-resolution models is streamlined by the 
methodologies outlined in the section on Integration with Long-term Archive/Repository 
Storage, ensuring a cohesive and adaptable simulation environment. 

 

 
Figure 8. Simulated sea-ice fraction from test configuration (left, 3140 surface nodes),  climate configuration (~120K surface 

nodes), and high resolution configuration (~7.3M surface nodes).  These configurations can easily be changed within the workflow. 

 

● Access to intermediate in-memory results: The core of the dynamic Earth System Model 
(ESM) workflow is the in-memory analysis of data stored within Cassandra. HECUBA 
provides a cross-language, user-friendly API for Cassandra, facilitating the efficient storage 
and retrieval of data. Since our previous deliverable, we have improved the IO throughput 
by adding the ability to ingest data from model simulations into Cassandra in parallel. This 
data is stored as binary blobs, organized by variable name and time chunks, a method 
consistent with the Zarr format. This compatibility provides scalable access and analysis of 
the data in Python through xarray7, where the array views are represented as lazy-loading 
Dask arrays. 

 

 
Figure 9. Illustration of in-memory data represented as an Xarray dataset: it shows the conversion of simulation results into an 

Xarray dataset format, showcasing dimensions, data variables, and their respective underlying dask array structures for lazy, and 
efficient parallel computation. These arrays are compatible with numerous statistical functions of numpy and scipy. 
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● AI integration for ensemble member pruning: In the context of dynamic ESM workflows, 
ensemble members are generated by varying initial conditions or altering model 
parameters. Each member undergoes an in-memory analysis to determine its relevance 
and accuracy, a process crucial for pruning less informative or redundant simulations to 
optimize computational resources. 

The analysis phase introduces a novel approach by incorporating AI/ML techniques to 
refine the ensemble. Specifically, during the simulation phase, an AI/ML-based 
methodology is employed to adaptively modify the simulation's timestep. This adjustment 
aims to reduce the spin-up time for ensemble simulations, enhancing efficiency without 
compromising the quality of results. 

The adaptive timestep approach utilizes JAX, a high-performance machine learning library, 
to fine-tune a control parameter influencing the timestep size based on the deviation 
between current simulation outcomes and a set of reference data. This deviation is 
quantified using metrics such as the Mean Squared Error (MSE) of coarse grained 
simulation data, providing a clear measure of the simulation's current performance against 
expected ranges of simulation output. 

Through the application of backpropagation technique, the control time step parameter is 
iteratively refined. By employing gradient descent algorithm, each update aims to reduce 
the error between the simulation and reference data, thereby optimizing the timestep size. 
This process ensures that the timestep is continually adjusted in response to the evolving 
conditions of the simulation, maintaining both stability and accuracy. 

● ML/DL capabilities: Simple, novel, ML based method is used in the analysis to dynamically 
change the time step as described in the section AI integration for ensemble member 
pruning. It also illustrates further ML possibilities that can take advantage of the 
representation of in-memory data represented in a convenient numpy-like format 
amenable to many AI/ML methods. 

● DA capabilities: This requirement aims to incorporate widely-used statistical analysis tools 
into the in-memory data analysis. By making the simulation data from Cassandra available 
as an Xarray dataset in Python, as described in above section, Access to intermediate in-
memory results, it seamlessly integrates with the extensive statistical functions provided 
by libraries such as NumPy and SciPy. Furthermore, constructing the dataset as lazy data 
using Dask arrays enhances efficiency, enabling more effective parallel computation for 
statistical analysis. This approach significantly streamlines the process, allowing for 
sophisticated data manipulation and examination directly within the in-memory results. 

● High-Performance Computing Support: As mentioned in the above section on Portability, 
the ESM workflow benefits from containerization. These containers can be constructed 
using a container service tailored for HPC centers, enabling their use across various HPC 
environments. Additionally, the FESOM2 model, used across numerous HPC centers across 
Europe, comes with pre-defined environments that are regularly updated. This ensures 
that the model can be compiled and executed smoothly on these platforms, reinforcing the 
workflow's adaptability and performance on advanced computing infrastructures. 
Furthermore, the containerized version of the FESOM2 model is regularly used for the 
continuous-integration tests in its source code repository. This container is portable across 
HPC centers with minor changes in the build step. 
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Figure 10. Illustrates HPC support for using FESOM2 model. The env directory included with FESOM2 source code contains 

configurations for different HPC centers that are regularly updated, at the lowest level is a shell file which contains all machine 
specific environments for that HPC. 

 

● Multi-member analysis: This requirement focuses on incorporating support for multi-
member analysis into the in-memory data framework as necessary. By making the results 
of each simulation member accessible as Xarray datasets, we can utilize Xarray's robust 
functionality to integrate multiple datasets along a newly defined ensemble dimension. 
This enables analysis across different ensemble members. 

 

 
Figure 11. Illustrates use of xarray’s features to merge in-memory results from multiple ensemble members to a single dataset for 

analysis over ensemble dimension. 
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4.3 Metrics evaluation 
The table of this section is a copy of Table 2 from section 3.1 “Overview of Initial Requirements 
and Metrics”, with the additional column “Value”. This new column contains the value for each 
metric assessed for the Dynamic ESM simulation workflow. 

 
Table 4. Dynamic ESM simulation workflow metrics evaluation 

Acronym Name Description Value 

LoC Lines of Code Number of Lines of code in 
the workflow implementation. 

2951 total 
 
Python ESM code 
720 code, 287 comments 
635 Python 
242 Bash Shell 
12 INI 
 
Alien4Cloud topology 
118 YAML 
 
Changes in FESOM2 
937 Fortran 

DoP Degree of 
Portability 

Percentage of workflow 
components that can be 
reused in other 
infrastructures and 
workflows. 

100%, with containers and 
parameterized execution. 

DT Deployment 
time 

Time elapsed to deploy the 
workflow 

Under 2 minutes 

ET Execution Time Time elapsed to execute a 
workflow. 

160 seconds on average, with 3 
nodes and 144 cores on 
MareNostrum4 (excluding queue 
time). 

SU Speed-up Execution time improvement 
when running with larger 
resources. 

Linear scaling for up to 8000 cores at 
core2 configuration (120K surface 
nodes) resolution and up to ~35K 
cores for NG5 configuration (~7.3M 
surface nodes).  FESOM2 has been 
well tested for scaling in 
publications[8].  
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Eff Efficiency Execution time degradation 
when running larger problems. 

100 up to the scaling limit.  

IOT I/O Time Percentage of Execution time 
performing I/O operations. 

 55% 

FTC Fault-tolerant 
components 

Percentage of workflow 
components that are fault-
tolerant. 

100% through pyCOMPSs fault-
tolerance feature. 

CH Core/Hour Number hours of a CPU Core 
consumed by the workflow 
execution. 

0.02 

EC Energy 
Consumption 

Energy consumed (Wh or 
Joules) associated with a 
workflow execution. 

2532 W 
 

SYPD Simulated years 
per day 

Throughput of ESM 
simulations 

60 SYPD on 400 cores without IO for 
low-res climate configuration, core 2 
(~120K surface nodes). 6 SYPD for 
km-scale configuration (~7.3M 
surface nodes) on 25000 cores. 

 

● LoC: Lines of code are calculated with an Open Source tool called pygount5, version 1.6.1. 
To replicate these numbers, one can clone the workflow-registry repository, checkout the 
main branch, git commit 3275bca60b473abe40378527b250609c4cb75d01, and run 
`pygount --format=summary --folders-to-skip awicm3 --suffix "yaml,yml,py,ini,sh" .`. For 
the FESOM2 code part, one can clone the repository, switch branches with `git checkout 
eflows_hecuba_templates_update`, then use `git log --numstat` to retrieve the number of 
lines added and removed, and apply some simple Bash Shell scripting to subtract removed 
from added and sum everything to have the number of lines modified: `git log --numstat -
-pretty="%H" master..eflows_hecuba_templates_update | grep -o -P "\d\s+\d" | awk 
'{print $1-$2}' | awk '{s+=$1} END {printf "%d\n", s}'`. 

● DoP: The FESOM2 model was executed on both MN4 and Levante, following the 
compilation instructions from the project documentation (basically issuing a command like 
./configure.sh bsc). The rest of the workflow was partially tested on Levante. Alien4Cloud 
was used to connect and launch simple jobs in Levante, however, COMPSs and Hecuba 
were not successfully installed on Levante, impeding an end-to-end test on Levante. These 
issues are related to the installation of infrastructure and tools for the workflow, but the 
workflow itself and dependencies are fully portable, also via Singularity containers. 

● DT: The deployment time for the Dynamic ESM simulation workflow was measured from 
the time a logged-in user in Alien4Cloud started the process to deploy the workflow 
application using an existing Alien4Cloud Topology (as described in the workflow registry 

 
5 https://pypi.org/project/pygount/ 
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documentation, and in previous deliverables). It does not account for the time to deploy 
Alien4Cloud, FESOM2, HPC modules, Python, and other dependencies and tools used in the 
workflow. 

● ET: The value provided is for the execution of the workflow on MN4 with the “core2” mesh, 
144 cores, using 3 nodes. The simulation used a single ensemble member for the start date 
1948. 

● SU: Speed-up represents the improvement in execution time when the workflow is 
executed using more computing resources FESOM2 scales linearly up to 400 cores at core2 
configuration (120K surface nodes) and up to 25K cores for km-scale configuration, NG5. 

● Eff: Efficiency is an index that represents the degradation of computation time when 
executing larger problems. Up to above mentioned linear scaling limits, efficiency is 100. 

● IOT: In the context of in-memory analysis, the input/output (IO) process can present a 
significant overhead when compared to conventional IO methods. This is due to the 
relatively high-frequency data required for the dynamic analysis step, coupled with the 
immediate disposal of data post-analysis, which results in considerable storage space 
savings. To evaluate this, a series of tests were conducted comparing the traditional serial 
IO backend (netCDF) with the HECUBA backend within the FESOM2 model. The findings 
revealed that at a relatively low-resolution (core2), the netCDF output occupied 
approximately 40% of the total simulation time, whereas HECUBA accounted for about 
55%. This discrepancy suggests that the parallel IO strategy may be inefficient, potentially 
due to the transmission of excessively small data chunks to HECUBA, resulting in 
considerable time lost in establishing connections to Cassandra. Although it has yet to be 
verified, there is a hypothesis that the current parallel, asynchronous IO approach 
implemented with HECUBA could yield superior performance in higher resolution 
simulations compared to the netCDF backend. 

● FTC: Fault tolerance is fulfilled by utilizing pyCOMPSs alongside the embedded 
checkpointing feature within the FESOM2 model. PyCOMPSs detects the exit code of the 
failed task, enabling its re-execution without restarting the entire process; the FESOM2 
model includes an internal checkpointing mechanism by saving its state using a restart file. 
So we can consider the percentage of FTC equal to 100%. 

● CH: Core/Hour represents the number of hours of a CPU Core consumed by the workflow 
execution, as retrieved from the BSC HPC Portal for a successful simulation. The BSC HPC 
Portal stores information saved by Slurm in MareNostrum4. 

● EC: Energy Consumption represents the energy consumed (Wh or Joules) associated with 
a workflow execution, as retrieved from the BSC HPC Portal for a successful simulation. The 
BSC HPC Portal stores information saved by Slurm in MareNostrum4. Below, Figure 12, 
shows the power consumption (in Watts) comparison of the dynamic ESM workflow and 
running the same ESM workflow without the pruning mechanism. 
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Figure 12. Dynamic ESM workflow power consumption with pruning mechanism enabled on MN4. 

 

It shows power consumption of each node with respect to time by running the dynamic ESM 
workflow simulation and by pruning a member, the power consumption gets reduced significantly 
thereby saving energy resources leveraging dynamicity of the ESM workflow. 

 

 
Figure 13. Dynamic ESM workflow (without pruning mechanism enabled) power consumption on MN4. 
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Figure 13 shows power consumption by running the same workflow but without the pruning 
mechanism thereby acting as a standard ESM workflow. Since it lacks the dynamicity of pruning a 
member at the runtime of workflow, saving power resources does not happen in these cases. 

Likewise, CPU usage between two workflow runs are also displayed in Figure 14, below.   

 

 
Figure 14. Dynamic ESM workflow CPU usage on MN4. 

 

The overall CPU usage reduced significantly during the dynamic ESM workflow simulation as 
compared to the run without pruning mechanism in which the CPU usage remains almost static as 
illustrated in Figure 15 below. 

 

 
Figure 15. Dynamic ESM workflow (without pruning mechanism enabled) CPU usage on MN4. 
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● AR: Accuracy of the results represents the accuracy of the results obtained through the 
workflow implemented during the project compared to the standard procedures currently 
used. None of the approaches used in the dynamic ESM model are intended to reduce 
accuracy of the simulations unlike some other workflows in eflows4HPC where reduced 
precision is used. Hence, we consider this 100 percent. 

4.4 External Evaluation 
The external evaluation procedure involved representatives from Max-Planck-Institute for 
Meteorology (MPI-M) and German Climate Computing Centre (DKRZ). From the MPI-M  we were 
evaluated by Dr. Lukas Kluft, who has more than 10 years of experience in running very high 
resolution climate models, processing of petabyte-scale climate data, development of climate 
model I/O, and data pre and post-processing software. From the DKRZ  we were evaluated by Dr. 
Florian Ziemen, who has more than 10 years of experience in running several climate models of 
different complexity, managing petabyte-scale data and developing open source software for 
efficient data processing. Both of them are currently involved in projects that develop and run 
kilometer scale climate models funded by EU (EERIE, DestinE, nextGEMS) and BMBF (WarmWorld).  

Both Dr Ziemen and Dr. Kluft positively evaluated both the Dynamic ESM workflow and additional 
functionality developed for ESM simulations in the framework of the eFlows4HPC project. They 
praise integration of in-memory data analysis climate modeling, which significantly enhances the 
simulation capabilities. Moreover, they note that the project shows successful collaboration across 
AWI and BSC, highlighting how this synergy fostered the development of cutting-edge tools and 
methodologies. Both experts agreed that the project outcomes meet the initial objectives set in 
the beginning of the project. 

Dr. Kluft and Dr. Ziemen provided valuable insights and recommendations for enhancing the 
project's capabilities. Specifically, they discussed the potential for refining the model's response to 
critical events such as cyclones. Dr. Ziemen suggested further exploring use of the Zarr format to 
optimize data handling. Additionally, they both highlighted the importance of incorporating fault 
tolerance and resilience in the system. These suggestions are aimed at advancing the project's 
efficiency in data processing and enhancing its capabilities. 

 

5 Analysis and Feature Extraction Validation 
5.1 Workflow Use Case Applications 
The statistical analysis and feature extraction workflow of Pillar II exploits the eFlows4HPC 
software stack for the integration of the ESM model execution and HPDA and ML approaches in 
order to analyze extreme events starting on the output of the ESM simulations. Specifically, 
PyCOMPSs allows to orchestrate different tasks of the workflow synchronizing the different tools 
and algorithms runs (e.g, Ophidia, Tstorms, ML for Tropical Cyclone, etc.). The following figure 
shows a simplified schema of the main blocks of the workflow. 
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Figure 16. Analysis and feature extraction workflow schema. 

 

The CMCC-CM3 simulation component marks the initial stage within the overarching framework. 
Usual configuration runs on 936 cores on Zeus Supercomputer at CMCC (52 full compute nodes) 
generating NetCDF files on a daily basis (each approximately 271 MB in size). The subsequent steps 
of the workflow occur once the working directory contains files spanning an entire year 
(amounting to nearly 100 GB). Facilitating concurrent execution of both ESM simulation and post-
processing is essential, given that the climate simulation may extend over multiple decades (e.g., 
30-35 years) and necessitate several days (or even months) to complete, depending on the HPC 
infrastructure employed. As mentioned above, to enable concurrent task execution, PyCOMPSs is 
used; more in detail, it employs a streaming interface, which monitors file production progress and 
identifies when a complete new year's of data becomes available. 

Once a full year of CMCC-CM3 output is available, PyCOMPSs activate the data analytics operators 
to compute the extreme climate event indices for heat waves and cold spells. Given the large 
volume of data involved, High-Performance Data Analytics (HPDA) operators from the Ophidia 
framework are employed to process and aggregate the datasets in parallel. This involves handling 
multiple datacubes comprising nearly 1.3 billion data points for extreme event computations. 
Additionally, leveraging Ophidia's capability to store datasets in memory between different 
operator executions, baseline value files containing long-term historical averages (totaling around 
2.6GB) are loaded only once and utilized throughout the workflows for the indexes computation, 
thereby reducing the need for recurring read operations from the storage. 

Tropical Cyclones (TCs) are intricate phenomena driven by a blend of atmospheric and oceanic 
processes. Earth System Models facilitate the simulation of these intricate interactions, offering 
valuable insights into their formation, intensification, and trajectories. Nonetheless, identifying 
such extremes within extensive climate datasets remains arduous, primarily due to the large 
volume of data and the constraints of conventional detection methods. Machine learning (ML) 
techniques can aid in extracting significant spatial features associated with TC presence in gridded 
climate data. 

The ML-enabled TC localization method deployed in eFlows4HPC enables the detection of TC 
presence based on a set of input climate variables simulated by ESMs (e.g., temperature, sea level 
pressure, wind speed, vorticity), as well as the localization of its center in terms of geographical 
coordinates. A Convolutional Neural Network (CNN) built on the Visual Geometry Group (VGG) 
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architecture, previously trained on historical data, is employed to pinpoint TC centers. The sub-
workflow encompasses five distinct tasks: the first four are carried out for each day of data, while 
the last one consolidates the results for an entire year of data. Specifically, the tasks involve: (i) 
post-processing of model simulations (e.g., regridding the CMCC-CM3 file), (ii) partitioning of data 
into non-overlapping patches and feature scaling, (iii) inference using pre-trained CNNs, (iv) geo-
referencing the predicted TC center coordinates onto a global map, and (v) aggregation of daily 
outcomes into a unified NetCDF file for the entire year. Figure 17 shows that process subdivided 
in data collection, classification and localization steps. 

 

 
Figure 17. Inference steps of the ML based approach for the TC detection. 

 

Furthermore, the workflow executes deterministic TC tracking schemes, leveraging the TSTORMS 
software, to further validate the findings. This stage involves three tasks: (i) parallel aggregation 
of daily files into monthly files, (ii) parallel processing of the twelve monthly files containing 6-
hourly atmospheric variables with TSTORMS to identify points exhibiting TC characteristics, and 
(iii) analysis of the files generated in the previous step in conjunction with TSTORMS to trace 
potential TC points and extract TC trajectories. The PyCOMPs streaming interface is also utilized in 
this scenario to monitor file production progress and detect the availability of the twelve monthly 
files. 

The case study was conducted on a geographically distributed infrastructure, utilizing the 
HPCWaaS interface hosted on a service node located at the Barcelona Supercomputing Center 
(BSC) in Barcelona, Spain. Meanwhile, the entire workflow was carried out on the Zeus 
supercomputer situated at CMCC in Lecce, Italy. The Alien4Cloud service, operating at BSC, 
facilitated the deployment of the environment onto the Zeus CMCC cluster and the submission of 
the workflow. This was achieved by remotely interacting with the cluster scheduling system, 
exploiting the configuration outlined in the TOSCA topology. PyCOMPSs coordinated the execution 
of individual workflow tasks on Zeus. 

A further test was deployed using two different HPC architectures: Zeus at CMCC and Nord3 at 
BSC. In particular, the CMCC-CM3 model is run on Zeus at CMCC. At the end of the production of 
each year of simulation, the output is transferred (the python script ssh2ssh is used) on the Nord3 
machine to the BSC where the workflow continues with the pipeline relating to the analytics and 
TC detection phase. A4C drives the stage-in of the necessary inputs at the two target 
infrastructures while PyCOMPSs the distributed execution of the two different workflow phases. 
Figure 18 shows the different modules and where they are executed. 
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Figure 18. Analysis and feature extraction workflow distributed at CMCC and BSC. 

 

5.2 Requirements validation 
 

Table 5. Analysis and feature extraction workflow requirements validation 

ID Name Description Priority Status 

1 Execution 
Robustness 

Management of fault tolerance during the 
workflow execution including checkpoints 
or retries. For example, during a large 
execution if a node fails, the workflow must 
be able to recover and continue to the end. 

Should  
Using PyCOMPSs and 
CMCC-CM3 
resubmission 
capability 

2 Portability Workflow components should be portable 
to various types of HPC infrastructures. 

Should Docker/Singularity 
containers 

3 Integrated 
workflow 
manageme
nt 

Requires the Management of task 
dependencies, execution of parallel 
simulations on different HPC 
infrastructures, management of batch jobs 
(submission, monitoring, cancellation), 
management of conditional paths in a 
transparent way. 

Must  
 
By PyCOMPSs 
capabilities 

4 Integration 
with long-
term 
archive/rep
ository 
storage 

Results may be stored in long-term storage 
for archiving purposes, second use (e.g. 
downstream services) and/or to satisfy 
FAIRness policies. 

May  
Using DLS capabilities 
on B2SHARE 
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5 Workflow 
adaptabilit
y 

Capability to easily manage, cancel, replace 
and add components invocations in the 
workflow, for instance allowing the 
execution starting from the n-th step. 

Should Simplified version 
avoid the CMCC-CM3 
model run + internal 
computation of 
climatological mean 

6 Access to 
intermedia
te in-
memory 
results 

The workflow should be able to retrieve 
data/intermediate outputs of the running 
processes directly from memory. 

Must  
Exploiting 
Ophidia/xarray in 
memory storage 

7 ML/DL 
capabilities 

Requires the support for training and 
inference of Neural Network models for 
example for Tropical Cyclone detection. 

Must  
ML approach for TC 
detection 

8 DA 
capabilities 

Support for descriptive analytics (e.g., 
statistical analysis) exploiting fast in-
memory analysis. 

Must Exploiting 
Ophidia/xarray in 
memory analysis 
capabilities 

9 High 
Performan
ce 
Computing 
support 

Climate models have to be executed on 
computing infrastructures capable of 
providing a large amount of  processing 
and memory resources. 

Must  
Run allowed on 
Zeus/Nord3 

10 Multi-
member 
analysis 

Support for concurrent execution of 
sub-workflows starting from different 
inputs (configurable) and comparison 
of the sub-workflows results. 

Must CMCC-CM3 run 
configurable and 
executions outputs 
comparable (e.g., 
different reference 
years)  

 
In the following the different requirements are evaluated. 

● Execution robustness: This requirement is met through the use of PyCOMPSs and the 
checkpointing embedded into the CMCC-CM3 model. In the first case, PyCOMPSs allows to 
re-execute the failed task by detecting the process exit code. This allows re-execution of 
the task and continuation of the workflow without re-executing the entire workflow. In the 
second case, the CMCC-CM3 model exploits an internal checkpointing mechanism; through 
this setting (which can be enabled or disabled when submitting the run) the model is able 
to save its state at regular intervals using a set of files called restart files. In the event that 
the execution were to fail, the implemented workflow uses PyCOMPSs for the retry and 
restart files to continue the simulation starting from the time step that caused the fault. 

● Portability: This requirement can be satisfied through the containerization of the 
workflow, the tools and applications necessary for its execution and the HPCWaaS service 
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offered by eFlows4HPC or by providing standard installation procedures exploiting well-
known and supported packages. More specifically, some components of the workflow have 
been containerized using docker and singularity which allows portability across different 
HPC infrastructures. The use of Spack also facilitates the configuration procedure of the 
various modules while the A4C framework associated with Yorc allows deployment and 
subsequent execution on the identified target architecture. Concerning the remaining 
components, they rely on common packages and libraries, available for the main 
infrastructures and O.S. Figure 19 shows the A4C interface where it is possible to select the 
execution target environments. 

 

 

Figure 19. A4C interface for the selection of the target environments. 

 

● Integrated workflow management: This requirement is satisfied through the use of the 
software stack provided by eFlows4HPC and in particular by exploiting the capabilities 
offered by PYCOMPSs. In fact, PYCOMPSs is able to manage the entire workflow in terms 
of dependencies between tasks both about the sequence of operations to be performed 
(task dependency) and with regards to the dependency of the inputs and outputs (data 
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dependency). For example, in the first case, two tasks that must be executed sequentially 
belong to two different and sequential statements in their PYCOMPSs definition 

 

 
 
An example of the second case, however, can be identified in the functionalities provided 
by the Streamin function of PYCOMPSs, used within the workflow: in this case an operation 
defined through a task is delayed until the proper inputs are available, i.e. until the previous 
task produced the necessary outputs. Within the workflow this function is used to properly 
synchronize the production of the necessary NetCDF files by the CMCC-CM3 model and the 
subsequent heat/cold waves indices computation and tropical cyclone detection 
operations. 
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Furthermore, the management of batch job submission, as well as monitoring and their 
cancellation, is managed at a high level via A4C which allows to start the run of the 
workflow, monitor its status and possibly stop its execution. 

● Workflow adaptability: This requirement concerns the possibility of managing, 
eliminating, replacing or adding components invocations in the workflow. This possibility is 
satisfied by the modularity with which the workflow was designed and by the conditional 
paths inserted into it. An example is given by the calculation of the climatological mean, 
necessary for the calculation of heat waves and cold spells; in fact, in this case, the 
workflow is set up to act in two distinct modes. The first method concerns the loading of 
these values from a pre-produced file: in this case, the corresponding climatological mean 
values have previously been saved to a file and the ingestion phase in Ophidia occurs only 
once. In the second case, however, Ophidia is able to calculate the climatological mean 
from the complete set of annual files (a total of 20 years) produced by the model; in this 
case, the process is obviously slower due to the large amount of data to be processed 
(about 2 TB). 

 

 
 

To speed up this process, however, a new functionality has been implemented in 
eFlows4HPC for the direct calculation of the climatological mean vs the previous 
mechanism which used multiple operations in sequence. 

 

 
 

● Access to intermediate in-memory results: This requirement is met by using the Python 
Xarray library and Ophidia. Both, in fact, allow keeping the data in memory for subsequent 
processing without necessarily having to download it to storage. In particular, xarray uses 
the Dataframe in-memory data format that can be shared between subsequent 
instructions in order to avoid saving to disk. 
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Ophidia, on the other hand, natively enables in-memory analysis, keeping in memory the 
datacubes needed for subsequent analyzes. Within the implemented workflow, this is for 
example the case of the climatological mean which is loaded into Ophidia's in-memory 
storage only once and then used for each year of simulation produced by the CMCC-CM3 
model for the calculation of the heat wavers and cold spells. Furthermore, Ophidia allows 
distributing the information related to a datacube across the memory of multiple 
computing nodes, allowing on the one hand the possibility of using a larger memory space 
and, on the other, processing the information in memory in parallel using multiple involved 
tasks. 

● ML/DL capabilities: In the implemented workflow, the tropical cyclone detection phase 
follows an approach designed in eFlows4HPC and based on Machine Learning techniques. 
Through the use of PyCOMPSs, the execution of the algorithm is inserted as a task within 
the overall workflow, before the production of the final maps and following the run of the 
CMCC-CM3 model, in parallel with the run of the operations performed by Ophidia for the 
calculation of heat/cold waves. 

● DA capabilities: This requirement concerns the support for descriptive analytics exploiting 
fast in-memory analysis. This requirement is satisfied by using the xarray library and 
Ophidia. Both, in fact, allow you to carry out statistical analysis operations in memory, 
applied, for example, via Ophidia for the calculation of heat/cold waves indices. 
Furthermore, as previously mentioned, Ophidia is able to use its data analytics functions 
by also taking advantage of the parallelism offered by an HPC infrastructure. 

● High Performance Computing support: This requirement concerns climate models that 
need computing infrastructures capable of providing a large amount of processing and 
memory resources to be executed. It is satisfied because the model used (CMCC-CM3 
coupled model) is executed on HPC infrastructure. In more detail, it requires 936 cores for 
its execution, 540 for its atmospheric component, 396 for its oceanic component. Figure 
20, shows a schema of the CMCC-CM3 coupled model along with the different 
components.  

Furthermore, the entire workflow is performed on HPC infrastructure, not only the climate 
model but also the analysis of extreme events (tropical cyclones detection and extreme 
events indices computation). 

● Multi-member analysis: This requirement concerns the possibility of supporting concurrent 
executions of sub-workflows starting from different inputs in a configurable manner and 
the possible comparison of the results related to the sub-workflows. This requirement is 
satisfied through the use of the software stack provided by eFlows4HPC, the architectural 
design and the internal properties of the software/tools used. More in detail, the CMCC-
CM3 model is configurable by modifying the input parameters; in particular it is possible to 
change the input files (forcings) and the initial configuration. The workflow design 
combined with the HPCWaaS architecture allows performing concurrent runs of the model 
and comparing the outputs that are stored in the user's personal repository. 

 

 

 



 

31 

 

D5.5 Pillar II - Validation and Evaluation 
Version 1.0 

 
Figure 20. Components of the CMCC-CM3 coupled model. 

 

5.3 Metrics evaluation 
Table 6. Analysis and feature extraction workflow metrics evaluation 

Acronym Name Description Value 

LoC Lines of Code Number of Lines of code in 
the workflow 
implementation. 

450 (Python code)  

DoP Degree of 
Portability 

Percentage of workflow 
components that can be 
reused in other 
infrastructures and 
workflows. 

80% 

DT Deployment 
time 

Time elapsed to deploy the 
workflow 

38 seconds 

ET Execution Time Time elapsed to execute a 
workflow. 

341.2 seconds  

SU Speed-up Execution time improvement 
when running with larger 
resources. 

Scaling up the number of 
computing nodes from 2 to 32: 
68.4% in the worst case 

Eff Efficiency Execution time degradation 
when running larger problems. 

Scaling up the number of 
computing nodes and input data: 
69% in the worst case 
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IOT I/O Time Percentage of Execution time 
performing I/O operations. 

84.72% 

FTC Fault-tolerant 
components 

Percentage of workflow 
components that are fault-
tolerant. 

100% (PyCOMPSs allows the rerun 
of the wf tasks) 

CH Core/Hour Number hours of a CPU Core 
consumed by the workflow 
execution. 

~ 6400 CPU/hours + 12 GPU/hours  

EC Energy 
Consumption 

Energy consumed (Wh or 
Joules) associated with a 
workflow execution. 

140.4 W  

AR Accuracy of 
the results 

Accuracy of scientific 
results should not degrade. 

95.36%  

 

● The LoC are calculated considering the PyCOMPSs workflow from the submission to the 
final extraction of the maps and results. Compared to the first project phase, the number 
of lines of code was reduced from 949 to 450 thanks to a series of code optimizations and 
a more extensive use of PyCOMPSs. 

● The DoP represents the percentage of the number of workflow components that can be 
reused in other infrastructures. The CMCC-CM3 model represents a component that is not 
portable to other infrastructures. As regards the remaining part of the workflow, the 
individual components are portable on different infrastructures: Ophidia has been 
containerized and is available as a docker and singularity image, the ML algorithm requires 
standard Python libraries (such as tensorFlow and xarray), while the tool TSTORMs is third-
party software and has a standard installation in a Linux environment. Overall, therefore, 
we can estimate that the portable percentage of the workflow is equal to 80%. 

● The DT represents the time needed to deploy the workflow. For the analysis and feature 
extraction workflow it represents the time necessary to activate the run of the CMCC-CM3 
model, corresponding to the first task of the workflow, on the target infrastructure (Zeus 
at CMCC) via the interface provided by A4C, approximately 38 seconds. 

● The ET represents the execution time for executing the entire workflow. The total time for 
the execution of the workflow is equal to 341.2 seconds. It is important to underline that, 
if we compare the execution time at the beginning of the project, it was reduced from over 
18 minutes to just under 6 minutes (with the same number of cores and temporal 
timesteps analyzed). This optimization was obtained through the new implementations 
carried out in eFlows4HPC (for example the new procedure for calculating the 
climatological average). As regards the ML algorithm for the detection of tropical cyclones, 
the inference phase is part of the overall workflow and is included in the total workflow 
time; however, as regards the training phase, the training time has been reduced from over 
five hours to just under three using a better memory and I/O management. 
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● SU represents the improvement in execution time when the workflow is executed using 
more computing resources. The speed up was calculated considering the analysis pipeline, 
including the calculation of heat waves and cold spells indices and the detection of TCs (in 
fact, the CMCC-CM3 model runs with a fixed number of cores per configuration used). 
Figure 21 shows the speed-up calculated as the computational resources used increase. 
The test involved up to 32 computing nodes of the Zeus supercomputer at CMCC, 
corresponding to 1152 cores used and was performed considering the run of the analysis 
pipeline on the output of one year of the CMCC-CM3 model, corresponding to 98.92 GB. 

 

 
Figure 21. Speed-up of the analysis and feature extraction workflow. 

 

● Eff is an index that represents the degradation of computation time when executing larger 
problems. As in the previous case and for the same reasons the calculation was performed 
considering the analysis pipeline. In this case (Figure 22), the test was performed using up 
to 32 nodes of the Zeus supercomputer and varying the input data from 6.18 GB up to 
98.92 GB. 

 
Figure 22. Efficiency of the analysis and feature extraction workflow. 
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● IoT represents the percentage of execution time dedicated to IO operations. In climate 
analyses, the IO phase usually covers a large part of the execution time as the amount of 
data being read and written is very high. The CMCC-CM3 model, for example, has a 
production rate of 0.36 SYPD (0.36 years of simulated products per day of execution) and 
every year produces datasets of 100GB in size (without considering the accessory and 
restart files). The post-processing and data analytics phase involved in eFlows4HPC starts 
from these datasets to start its execution. In eFlows4HPC optimizations have been used 
and implemented for the reduction of I/O time which still covers 84.72% of the total 
execution time. 

● FTC represents the percentage of workflow components that are fault-tolerant. As already 
mentioned in the requirements description, the fault tolerance is fulfilled by utilizing 
PyCOMPSs alongside the embedded checkpointing feature within the CMCC-CM3 model. 
PyCOMPSs detects the exit code of the failed task, enabling its re-execution without 
restarting the entire process; the CMCC-CM3 model includes an internal checkpointing 
mechanism by saving its state using a set of restart files. So we can consider the percentage 
of FTC equal to 100%. 

● CH represents the number of hours of a CPU Core consumed by the workflow execution. 
For this metric we considered the entire workflow, including the run of the CMCC-CM3 
model and subsequent pipeline related to the calculation of heat/cold waves and TC 
detection. In total the workflow uses approximately 6400 cores/hours. Furthermore, the 
training phase of the ML model takes 12 GPU/Hours  

● EC represents the energy consumed associated with a workflow execution. This test was 
carried out considering the energy used on 3 computing nodes of the Zeus supercomputer 
during the analytics pipeline on the outputs of the CMCC-CM3 model related to a year of 
simulation. The energy consumed by the process corresponds to about 140.4W 

● AR represents the accuracy of the results obtained through the workflow implemented 
during the project compared to the standard procedures currently used. In particular, the 
machine learning process for the detection of tropical cyclones was taken into 
consideration for the analysis, comparing the results with the TSTORMs tool, currently 
considered the de facto standard for this type of analysis. The accuracy of the ML process 
itself is at 95.36% regarding the ML test phase, Figure 23 shows a comparison map between 
the output of the algorithm implemented in eFlows4HPC and the TSTORMs tool. 

 

 
Figure 23. Comparison between the TSTORMS and the ML approach results. 
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5.4 External evaluation 
The external evaluation procedure involved the CMCC staff belonging to the project and Dr. 
Stefano Natali, co-founder, managing director and space business manager of MEEO Srl (Italy) and 
SISTEMA GmbH (Austria). He has more than 20 years' experience in the analysis of satellite data, 
for atmospheric and biophysical parameters retrieval. He has more than 15 years' experience in 
project management in European Commission, European Space Agency and national projects and 
he is fully involved in the development and adoption of the Advanced geospatial DAta 
Management platform (ADAM) to facilitate the access and exploitation of a large variety and 
volume of geospatial data. 

Dr. Natali positively evaluated the work carried out in the eFlows4HPC project, judging the project 
and case study to be very interesting and ambitious and the architecture well structured. He also 
positively assessed that all the requirements presented at the beginning of the project had been 
satisfied. 

Finally, he gave a series of useful feedback regarding the possibilities of extending and optimizing 
the case study and the applied procedures. In particular, regarding the ML procedure applied, he 
suggested verifying the adoption of other climate models than those currently used (ERA5 for 
training and CMCC-CM3 for inference). This could reduce the number of false positives extracted 
by both the ML procedure and the TSTORMS tool. He also suggested applying the heat waves and 
cold spells indices computation procedure on a larger dataset in order to reduce the impact of the 
overhead. 

 

6 Conclusions and recommendations 
The two workflows implemented in the context of Pillar II - Dynamic and adaptive workflows for 
climate modeling, highlight the effectiveness of the application of the HPCWaaS paradigm and the 
software stack provided by the eFlows4HPC project in the context of climate research applications. 
The requirements defined at the beginning of the project were satisfied and the metrics 
demonstrated the effectiveness in the implementation of the two workflows. Furthermore, 
external evaluations demonstrated the correct implementation and applicability in the scientific 
context, reporting useful advice and considerations for future developments. 

As general recommendations and future developments we can take the following into 
consideration: 

● Alien4Cloud will not be further maintained, so the entry point of the end-to-end workflows 
would need to be ported to some other solution. In this sense, the experience acquired, 
the decoupling of the pipelines executed on the target machines (driven by PyCOMPSs) 
from the submission mode (driven by A4C and Yorc), along with the TOSCA configuration 
that could be re-used in other platforms (such as LEXIS[2], a EU platform maintained by 
IT4Innovations (CZ)) will make straightforward the migration to other solutions; 

● It would be possible to evaluate other workflow management solutions, such as Cylc[3], 
ecFlow[4] or Autosubmit[5], more commonly used in the climate context, with some 
adaptations to the control mode of the ensemble members which would make the 
Dynamic ESM workflow more portable; 
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● Despite demonstrating potential of In-memory analysis with Cassandra as backend, at least 
in terms of saving storage space and dynamic workflows, it may still need fine tuning for 
effectiveness and evaluate it against higher resolution simulations. It is also interesting to 
compare using other databases such as Redis as IO backends.  

● The statistical analysis and feature extraction workflow could be applied starting from the 
products of other climate models or in other contexts. In the first case, higher horizontal 
resolution datasets could be used. In the second case, ocean models could be used in order 
to calculate indices relating to marine heat waves or for the detection of marine eddies. 

● The statistical analysis and feature extraction workflow could be embedded within the 
CMCC-CM3 model in order to directly access the data produced even before they are saved 
to disk. There are specific solutions (e.g. XIOS[6]) coupled with the climate model useful for 
extracting various types of statistical information but they are linked to the model they 
belong to and there is a lack of a general purpose solution that can be applied to multiple 
models or to models that belong to a certain context (e.g., ocean models). 
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7 Acronyms and Abbreviations 
● ESM: Earth System Model 

● HPC: High-Performance Computing 

● MN4: MareNostrum 4 

● TOSCA: Topology and Orchestration Specification for Cloud Application 
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9.1 Software Repositories 
Name of Software Description, link 

COMPSs 
COMPSs encapsulates PyCOMPSs that is used to orchestrate the 
workflow tasks. 
https://github.com/bsc-wdc/compss  

Eflows4HPC software Catalog  
This repository contains specifications to build softwares used in 
workflow either in containers or directly on a HPC. 
https://github.com/eflows4hpc/software-catalog  

WORKFLOW REGISTRY 

This repository contains all the workflows  across Eflows4HPC WPs. 
Pillar_II directory contains workflows for this Pillar. 
https://github.com/eflows4hpc/workflow-registry 
 

HECUBA 
HECUBA provides an efficient API to store and retrieve data for in-
memory analysis for Dynamic ESM workflows. 
https://github.com/bsc-dd/hecuba  

FESOM2 

FESOM2 is the ocean-climate model used in Dynamic ESM workflows. 
Following branch contains modifications to its source with 
HECUBA/CASSANDRA as IO-backend and for workflows. 
https://github.com/FESOM/fesom2/tree/eflows_hecuba_templates_
update  
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OPHIDIA 
OPHIDIA provides an efficient API to perform in-memory analysis for 
Analysis and Feature Extraction workflows. 
https://github.com/OphidiaBigData  

 

 

https://github.com/OphidiaBigData
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