

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Documentation Information

Contract Number 9555558

Project Website www.eFlows4HPC.eu

Contractual
Deadline 29.02.2024

Dissemination Level [PU]

Nature Other

Author Suvarchal K. Cheedela and Nikolay Koldunov

Contributors
Alessandro D’Anca (CMCC), Sonia Scardigno (CMCC), Donatello Elia
(CMCC), Rohan Ahmed (BSC), Bruno de Paula Kinoshita (BSC), Suvarchal
K. Cheedela (AWI), Nikolay Koldunov (AWI)

Reviewer Daniele Peano (CMCC)

Keywords Earth System Models, workflows, data analysis, machine learning

This project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 955558. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and Spain, Germany,
France, Italy, Poland, Switzerland, Norway.

1

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Change Log

Version Description Change

V0.1 Initial ToC

V0.2 First version, sent to internal review

V0.3 Version revised after the internal review

V1.0 Final version, formatted for submission

2

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Table of Contents
1 Executive Summary .. 3

2 Introduction .. 3

2.1 Purpose and Scope of the Report 3

2.2 Outline 3

3 Workflow Requirements and Validation Methodology ... 4

3.1 Overview of Initial Requirements and Metrics 4

4 Dynamic ESM simulation workflow Validation .. 6

4.1 Workflow Use Case Applications 6

4.2 Requirements validation 9

4.3 Metrics evaluation 17

4.4 External Evaluation 22

5 Analysis and Feature Extraction Validation .. 22

5.1 Workflow Use Case Applications 22

5.2 Requirements validation 25

5.3 Metrics evaluation 31

5.4 External evaluation 35

6 Conclusions and recommendations ... 35

7 Acronyms and Abbreviations ... 37

8 List of figures and tables .. 37

9 References .. 38

9.1 Software Repositories 38

3

D5.5 Pillar II - Validation and Evaluation
Version 1.0

1 Executive Summary
This report presents a detailed evaluation of the eFlows4HPC project's Pillar II, focusing on the
development and validation of advanced workflows for Earth System Models (ESMs) in High-
Performance Computing (HPC) environments. It covers the implementation of dynamic ESM
simulation and analysis workflows, incorporating innovative techniques like in-memory data
handling, ensemble pruning, and high-performance data analytics. The validation process
underscores the workflows' adaptability, fault tolerance, and efficiency in handling large-scale,
data-intensive tasks. Through comprehensive assessments, including external evaluations, the
report highlights the effectiveness of these workflows in practical ESM applications and
acknowledges the challenges faced, particularly in integrating machine learning and managing vast
data volumes in HPC settings. The findings suggest significant enhancements in ESM simulations,
showcasing the potential of these workflows in advancing climate modeling and analysis, while
also pointing towards future avenues for improvement in technology integration and optimization.

2 Introduction
High-performance computing (HPC) has been an integral tool for advancing our understanding of
atmospheric and oceanic processes. Over time, it has expanded to encompass Earth System
Models, enabling comprehensive simulations that capture the processes within our planet's
systems. These simulations stand out as one of the most demanding applications of HPC, not solely
because of the immense computational resources they require. They also pose unique challenges,
such as managing intensive input/output operations, handling vast volumes of data, and the
necessity to process and analyze the data within the same computational environments where it
is generated. The advanced workflows of Pillar II have addressed key challenges in ESM simulations
on HPC, enhancing data handling, I/O efficiency, and on-site data analysis, potentially leading to
more robust and insightful simulations.

2.1 Purpose and Scope of the Report
Pillar II addresses several critical steps in the ESM workflow, namely dynamic data analysis during
the model run, and feature extraction during the post-processing phase. In this deliverable, we will
describe the fundamental components of the resulting workflows, perform their validation, and
evaluate them against the criteria established at the beginning of the project (Deliverable 5.1).

2.2 Outline
We begin by establishing the Workflow Requirements and Validation Methodology, presenting
an overview of the initial requirements and the metrics for assessment in Section 3. The core of
the report lies in the validation sections, with Section 4 delving into the Dynamic ESM Simulation
Workflow Validation, including specific use case applications and the validation process itself, as
well as external evaluation. Section 5 mirrors this structure for Analysis and Feature Extraction
Validation. The document ends with conclusions and recommendations in Section 6.

4

D5.5 Pillar II - Validation and Evaluation
Version 1.0

3 Workflow Requirements and Validation
Methodology

At the start of the eFlows4HPC project, we analyzed standard ESM workflow steps and identified
general functional and non-functional requirements and metrics to evaluate the quality of the
resulting Pillar II workflows (Deliverable 5.1). This section details the initial set of these
Requirements and Metrics, which will inform the evaluation in the subsequent sections.

The framework presented here includes criteria selected for their relevance to the workflows'
performance and reliability. The following sections will apply this framework to assess whether
the workflows meet the project's objectives, focusing on their practical application within the ESM
domain.

3.1 Overview of Initial Requirements and Metrics
Taking into account information on building blocks and requirements of the ESM workflow and its
components described above, in this section we provide the general functional and non-functional
requirements. The keywords in the priority column are defined according to the RFC 2119 [1].

Table 1. Requirements of the ESM workflow and its components.

ID Name Description Priority

1 Execution
Robustness

Management of fault tolerance during the workflow execution
including checkpoints or retries. For example, during a large
execution if a node fails, the workflow must be able to recover and
continue to the end.

Should

2 Portability Workflow components should be portable to various types of HPC
infrastructures.

Should

3 Integrated
workflow
management

Requires the Management of task dependencies, execution of
parallel simulations on different HPC infrastructures, management
of batch jobs (submission, monitoring, cancellation), management
of conditional paths in a transparent way.

Must

4 Integration
with long-term
archive/reposi
tory storage

Results may be stored in long-term storage for archiving purposes,
second use (e.g. downstream services) and/or to satisfy FAIRness
policies.

May

5 Workflow
adaptability

Capability to easily manage, cancel, replace and add components
invocations in the workflow, for instance allowing the execution
starting from the n-th step.

Should

6

Access to
intermediate
in-memory
results

The workflow should be able to retrieve data/intermediate
outputs of the running processes directly from memory.

Must

7

AI integration
for ensemble

Support for applying Machine Learning techniques on
intermediate data of running members to compute the members

Should

5

D5.5 Pillar II - Validation and Evaluation
Version 1.0

member
pruning

that will be discarded at a given step of the simulation.

8 ML/DL
capabilities

Requires the support for training and inference of Neural Network
models for example for Tropical Cyclone detection.

Must

9 DA capabilities Support for descriptive analytics (e.g., statistical analysis)
exploiting fast in-memory analysis.

Must

10 High
Performance
Computing
support

Climate models have to be executed on computing infrastructures
capable of providing a large amount of processing and memory
resources.

Must

11 Multi-member
analysis

Support for concurrent execution of sub-workflows starting from
different inputs (configurable) and comparison of the sub-
workflows results.

Must

In line with the requirements, best practices in code development and quality are essential.
Testing, and in particular continuous integration testing, should be part of the development cycle
to catch errors in the workflow. Inline documentation aids workflow developers in understanding
and adjusting the code. Clear deployment guides and user manuals are important for easy
installation on new HPC systems and for user adoption of the workflows.

Building on the foundation of these requirements and best practices, we also perform quantitative
evaluation of the workflows’ success. The subsequent evaluation will employ a defined set of
metrics originating from the initial phase of the eFlows4HPC project. Selected for their relevance
to the development and operation of workflows, these metrics will quantify aspects such as
maintainability, usability, and efficiency. They serve as benchmarks for the assessment, reflecting
the project's targets in terms of performance, scalability, and resource utilization. The following
table offers a synopsis of these metrics, each with a specific role in the evaluation process,
providing a framework for a detailed analysis of the workflows.

Table 2. Metrics for evaluation of ESM workflows.

Acronym Name Description Area

LoC Lines of Code Number of Lines of code in the workflow
implementation.

Development
&
Maintenance

DoP Degree of Portability Percentage of workflow components that can be
reused in other infrastructures and workflows.

Accessibility &
Deployment

DT Deployment Time Time elapsed to deploy the workflow. Accessibility &
Deployment

ET Execution Time Time elapsed to execute a workflow. Performance

SU Speed-up Execution time improvement when running with
larger resources.

Performance

6

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Eff Efficiency Execution time degradation when running larger
problems.

Performance

IOT I/O Time Percentage of Execution time performing I/O
operations.

Data
Management

FTC Fault-tolerant
components

Percentage of workflow components that are fault-
tolerant.

Reliability

CH Core/Hour Number hours of a CPU Core consumed by the
workflow execution.

Energy & Cost

EC Energy Consumption Energy consumed (Wh or Joules) associated with a
workflow execution.

Energy & Cost

AR Accuracy of the
results

Accuracy of scientific results should not degrade. Pillar II
specific

SYPD Simulated years per
day

Throughput of ESM simulations. Pillar II
specific

4 Dynamic ESM simulation workflow Validation
4.1 Workflow Use Case Applications
The dynamic ESM simulation workflow integrates dynamic access to model results and online-
based approaches to prune ensemble simulation members during the model execution, with the
aim of saving resources. Unlike other standard ESM workflows which do not take into account such
on-the-fly decisions based on the generated simulation data from multiple members, this dynamic
workflow supports such features thereby proving to be efficient in resource utilization. Moreover,
It is available in Alien4Cloud, the web entry point for the workflow, which helps run the workflow
with specified parameters over the web interface and abstracting the complexity of workflow
initialization at the same time.

Figure 1. Alien4Cloud screenshot of the ESM_Workflow topology.

7

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Figure 1 shows the TOSCA workflow topology deployed to the Alien4cloud web application. It
launches the main workflow Bash Shell script which subsequently loads the required dependencies
and modules. Lastly, it calls a PyCOMPSs command (enqueue_compss), ultimately running the
Python code for ESM simulation on an HPC platform.

The workflow topology allows the user to pass parameters that define the simulation
configuration. Parameters available to the eFlows4HPC user are the HPC platform, list of start
dates, number of ensemble members, number of cores to be allocated, and number of cores per
node. The screenshot in Figure 2 demonstrates a sample run configuration on the MN4 as the HPC
machine, with the start date 1948, 144 as number of cores, and 48 cores per node as computing
resources—which results in 3 nodes being allocated for this simulation submission (144 divided by
48).

Figure 2. Simulation run configuration, with user provided parameters to control the model configuration.

An intermediate step is handled by scripts written in Bash Shell and Python. These scripts are called
by Alien4Cloud and are responsible for validating the user input, loading the required
configuration, and preprocessing the model Fortran namelists (which hold configuration values
that control input and features of the model). The scripts and the PyCOMPSs workflow definition
are both versioned under Git, and available in the eFlows4HPC workflow registry1.

In Figure 3 we show all the parts of the dynamic ESM simulation workflow. A user request to start
the simulation in Alien4Cloud (1) launches the Bash Shell script remotely in MN4 via SSH. The Bash
Shell script validates user input, and calls enqueue_compss, a PyCOMPSs utility that starts the
workflow (2). One of the tasks in the workflow preprocesses Fortran namelists, replacing variables
and creating the random values for the ensemble members (random perturbation) and saves it to
the disk for the model (3). Another task is responsible for launching FESOM2 using MPI via the srun
Slurm utility (4). The workflow launches one FESOM2 task for each ensemble member.

1 https://github.com/eflows4hpc/workflow-registry

8

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Figure 3. Illustration of all the parts of the dynamic ESM simulation workflow.

FESOM2 reads the preprocessed Fortran namelists that contain paths, and parameters provided
by the user that determines the data that is used to start the simulation (input, initial conditions,
meshes, simulation parameters and output variables). FESOM2 writes requested output variables
at requested frequency to the Cassandra database using the Hecuba API (5). The data written by
FESOM is retrieved by another PyCOMPSs task responsible to evaluate whether ensemble
members must be pruned or not (6). This task is responsible for ML/AI component used to back
propagate the changes in timestep when simulation is unstable. Most parts of the execution create
logs on the disk in MN4, which are available to the user during the simulation via the Alien4Cloud
web interface (7), and after the simulation as they are stored in the HPC platform on a path
configured by the user.

The simulations executed on MN4 used the FESOM2 “pi” test mesh, and the “core2” mesh (meshes
are described in the deliverable “D9.2 Data Management Plan version 3.0”, under “Data
Summary”). The resources used for these simulations were, respectively, 1 node with 2 cores, and
3 nodes with 144 cores. FESOM2 does not output NetCDF, as, instead, it writes to an instance of a
Cassandra database managed by Hecuba and pyCOMPSs (as illustrated in Figure 3). It is important
to note that the model is not compiled during the workflow execution. Instead, the workflow uses

9

D5.5 Pillar II - Validation and Evaluation
Version 1.0

a pre-compiled version of FESOM2 on MN4, from the FESOM2 public repository Git branch
eflows_hecuba_templates_update2.

For pruning, a pyCOMPSs task is initialized with the rest of the workflow, and is responsible to call
the code that analyzes the status of ensemble members and mark them to be pruned or not. To
mark an ensemble member to be pruned, the task changes a flag in the Cassandra database. Doing
that, the next time the FESOM2 model queries the database, it also checks for the flag and if it
corresponds to the ensemble member being pruned the model stops, as seen in Figure 4.

Figure 4. Pruning an ensemble member task called from the terminal.

4.2 Requirements validation
The table of this section is a copy of Table 1 from section 3.1 “Overview of Initial Requirements
and Metrics”, with the additional column “Status”. This new column contains the validation status
for each requirement in the context of the Dynamic ESM simulation workflow.

Table 3. Dynamic ESM simulation workflow requirements validation

ID Name Description Priority Status

1 Execution
Robustness

Management of fault
tolerance during the
workflow execution
including checkpoints or

Should Implemented via pyCOMPSs fault-
tolerance feature3 and FESOM2’s
ability to checkpoint and restart the
simulations.

2 https://github.com/FESOM/fesom2/tree/eflows_hecuba_templates_update
3
https://pycompss.readthedocs.io/en/stable/Sections/09_PyCOMPSs_Notebooks/syntax/3.4_Defining_classes_and_
objects-with-fault-tolerance.html

10

D5.5 Pillar II - Validation and Evaluation
Version 1.0

retries. For example,
during a large execution
if a node fails, the
workflow should be able
to recover and continue
to the end.

2 Portability Workflow components
should be portable to
various types of HPC
infrastructures.

Should Implemented with Singularity
containers deployed in MN4, Spack
specification for installing all
necessary dependencies on any
HPC and modular configuration
implemented in Bash Shell and
Python scripts4.

3 Integrated
workflow
management

Requires the
Management of task
dependencies, execution
of parallel simulations
on different HPC
infrastructures,
management of batch
jobs (submission,
monitoring,
cancellation),
management of
conditional paths in a
transparent way.

Must Implemented with pyCOMPSs, and
parametrization of Alien4Cloud
application and of Bash Shell and
Python scripts.

4 Integration with
long-term
archive/repository
storage

Results may be stored in
long-term storage for
archiving purposes,
second use (e.g.
downstream services)
and/or to satisfy
FAIRness policies.

May Through the use of Hecuba and a
Cassandra database, results can be
stored in a large persistent
database, or transferred to other
locations such as cloud storage.

5 Workflow
adaptability

Capability to easily
manage, cancel, replace
and add components
invocations in the
workflow, for instance
allowing the execution
starting from the n-th
step.

Should Implemented through
parametrization of PyCOMPSs
workflow, where resources, model
configuration and analysis can be
changed.

6

Access to
intermediate in-
memory results

The workflow must be
able to retrieve
data/intermediate
outputs of the running
processes directly from

Must Access to in-memory data is
provided with a numpy-like array
view using HECUBA, and is further
abstracted using Dask9 arrays and
xarray7 for efficient access.

4 https://github.com/eflows4hpc/workflow-registry/blob/main/Pillar_II/esm/README.md

11

D5.5 Pillar II - Validation and Evaluation
Version 1.0

memory.

7

AI integration for
ensemble
member pruning

Support for applying
Machine Learning
techniques on
intermediate data of
running members to
compute the members
that will be discarded at
a given step of the
simulation.

Should

AI technique is used to adaptively
change the time step for each
ensemble member . Pruning is done
based on the stability of each
ensemble member.

8 ML/DL capabilities Requires the support for
training and inference of
Neural Network models
for example for Tropical
Cyclone detection.

Must Choice of representing the in-
memory data numpy-like format
makes it amenable to many AI/ML
methods and tools.

9 DA capabilities Support for descriptive
analytics (e.g., statistical
analysis) exploiting fast
in-memory analysis.

Must Choice of representing the in-
memory data numpy-like format
makes it amenable to extensive
statistical functions of Numpy and
SciPy. Additionally, use of Dask9
arrays paves way for an efficient
and scalable analysis.

10 High Performance
Computing
support

Climate models have to
be executed on
computing
infrastructures capable
of providing a large
amount of processing
and memory resources.

Must Climate model is containerized and
has environments defined for
numerous HPC environments.
PyCOMPSs workflows are tested on
MN4 and on Levante with Slurm.

11 Multi-member
analysis

Support for concurrent
execution of sub-
workflows starting from
different inputs
(configurable) and
comparison of the sub-
workflows results.

Must With the parametrization that was
pending in the previous deliverable
we are now able to have multiple
users starting simulations
concurrently, re-using the same
input data and model binaries and
containers.

The dynamic ESM simulation workflow code has been written with an IDE that provides a free code
inspection tool (JetBrains PyCharm), and other non-functional requirements such as coding best
practices have been followed. For example, the project uses ShellCheck and bats for static analysis
and unit tests for Bash Shell scripts. And it uses Mypy for type checking and Pytest for unit tests in
Python. The current code coverage is at 76.59%. These tools are executed in continuous
integration for every commit to the workflow using GitHub Actions. Finally, the workflow folder in
GitHub includes a README.md with documentation with general information about the workflow,
instructions to build, run, and troubleshoot the workflow.

12

D5.5 Pillar II - Validation and Evaluation
Version 1.0

● Execution robustness: The use of PyCOMPSs provides fault tolerance by capturing error
codes from failed tasks and facilitating their re-execution. Similarly, the FESOM2 model
enables the periodic saving of the model's state, called restarts, at user-defined intervals
in its namelist. This feature allows for the resumption of execution from the last saved
state. In the event of a failure, the PyCOMPSs workflow initiates task retries, and the
FESOM2 model resumes the simulation from the last saved checkpoint, thereby ensuring
continuity and eliminating the loss of progress.

● Portability: It is achieved by containerizing the workflow, including all applications of the
workflow. Containerizing the entire workflow is done using the HPCWaaS service provided
by eFlows4HPC. This service employs Spack specifications
(https://github.com/eflows4hpc/software-catalog/tree/main/packages) to construct
containers in the Singularity format tailored for specific HPC targets. As a result, it ensures
compatibility with MPI-runtime environments and facilitates secure deployment on the
intended HPC systems. While the A4C framework, in conjunction with Yorc, enables
deployment and execution on chosen architectures, it has been primarily tested on the
MN4 system. Additionally, the applications have been independently verified and
constructed using consistent methodologies on the Levante HPC at the German Climate
Computing Center and local linux desktop development environments.

● Integrated workflow management: PyCOMPSs is instrumental in initiating and managing
essential components such as Cassandra, which is crucial for storing and handling the
simulations' in-memory data, simulations and analysis tasks. At the outset of each
simulation, PyCOMPSs is responsible for bootstrapping Cassandra, ensuring that the
database is up and running to accommodate the data influx from the simulations.

● Integration with Long-term Archive/Repository Storage: The dynamic Earth system model
(ESM) simulation workflow incorporates a generic and extendable strategy. Specifically, the
inputs required for model simulations—categorized broadly into initial conditions, forcing,
and mesh—are archived in cloud storage available at
swift.dkrz.de.https://swiftbrowser.dkrz.de/public/dkrz_035d8f6ff058403bb42f8302e6ba
dfbc/eflows4hpc/

Figure 5. Input datasets stored on DKRZ’s swift storage, these can be downloaded on-the-fly in any workflow to start simulations

using FESOM2.

These input datasets can be accessed using a Python function as part of the pre-simulation task
within the PyCOMPs workflow. (PyCompss task figure follows).

Similarly, simulation outputs are archived in a designated cloud storage container, systematically
organized by simulation ID, time step, and spatial chunk. This approach not only facilitates the
parallel uploading of data required for subsequent analysis but also adopts a format akin to the

https://swiftbrowser.dkrz.de/public/dkrz_035d8f6ff058403bb42f8302e6badfbc/eflows4hpc/
https://swiftbrowser.dkrz.de/public/dkrz_035d8f6ff058403bb42f8302e6badfbc/eflows4hpc/
https://swiftbrowser.dkrz.de/public/dkrz_035d8f6ff058403bb42f8302e6badfbc/eflows4hpc/
https://swiftbrowser.dkrz.de/public/dkrz_035d8f6ff058403bb42f8302e6badfbc/eflows4hpc/
https://swiftbrowser.dkrz.de/public/dkrz_035d8f6ff058403bb42f8302e6badfbc/eflows4hpc/

13

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Zarr data format. This choice enhances the ease of data integration and analysis in Python by a
broader scientific community.

Figure 6. Illustrates workflow task to download necessary input data required for FESOM2 simulation from a cloud store before

simulation.

Figure 7. Illustrates workflow task to upload the simulation results to cloud storage either during simulation or at the end of the

simulation.

14

D5.5 Pillar II - Validation and Evaluation
Version 1.0

● Workflow adaptability: This requirement emphasizes the flexibility to modify the workflow
in response to changes in model configurations, such as alterations in resolution, or
adjustments in analysis procedures. It also pertains to the workflow's capacity to operate
effectively with variations in data volume during input/output (IO) operations. The
workflows have been evaluated for their robustness with increase in IO frequency and
when applied to model configurations of higher spatial resolution. Moreover, the
procurement of required inputs for higher-resolution models is streamlined by the
methodologies outlined in the section on Integration with Long-term Archive/Repository
Storage, ensuring a cohesive and adaptable simulation environment.

Figure 8. Simulated sea-ice fraction from test configuration (left, 3140 surface nodes), climate configuration (~120K surface

nodes), and high resolution configuration (~7.3M surface nodes). These configurations can easily be changed within the workflow.

● Access to intermediate in-memory results: The core of the dynamic Earth System Model
(ESM) workflow is the in-memory analysis of data stored within Cassandra. HECUBA
provides a cross-language, user-friendly API for Cassandra, facilitating the efficient storage
and retrieval of data. Since our previous deliverable, we have improved the IO throughput
by adding the ability to ingest data from model simulations into Cassandra in parallel. This
data is stored as binary blobs, organized by variable name and time chunks, a method
consistent with the Zarr format. This compatibility provides scalable access and analysis of
the data in Python through xarray7, where the array views are represented as lazy-loading
Dask arrays.

Figure 9. Illustration of in-memory data represented as an Xarray dataset: it shows the conversion of simulation results into an

Xarray dataset format, showcasing dimensions, data variables, and their respective underlying dask array structures for lazy, and
efficient parallel computation. These arrays are compatible with numerous statistical functions of numpy and scipy.

15

D5.5 Pillar II - Validation and Evaluation
Version 1.0

● AI integration for ensemble member pruning: In the context of dynamic ESM workflows,
ensemble members are generated by varying initial conditions or altering model
parameters. Each member undergoes an in-memory analysis to determine its relevance
and accuracy, a process crucial for pruning less informative or redundant simulations to
optimize computational resources.

The analysis phase introduces a novel approach by incorporating AI/ML techniques to
refine the ensemble. Specifically, during the simulation phase, an AI/ML-based
methodology is employed to adaptively modify the simulation's timestep. This adjustment
aims to reduce the spin-up time for ensemble simulations, enhancing efficiency without
compromising the quality of results.

The adaptive timestep approach utilizes JAX, a high-performance machine learning library,
to fine-tune a control parameter influencing the timestep size based on the deviation
between current simulation outcomes and a set of reference data. This deviation is
quantified using metrics such as the Mean Squared Error (MSE) of coarse grained
simulation data, providing a clear measure of the simulation's current performance against
expected ranges of simulation output.

Through the application of backpropagation technique, the control time step parameter is
iteratively refined. By employing gradient descent algorithm, each update aims to reduce
the error between the simulation and reference data, thereby optimizing the timestep size.
This process ensures that the timestep is continually adjusted in response to the evolving
conditions of the simulation, maintaining both stability and accuracy.

● ML/DL capabilities: Simple, novel, ML based method is used in the analysis to dynamically
change the time step as described in the section AI integration for ensemble member
pruning. It also illustrates further ML possibilities that can take advantage of the
representation of in-memory data represented in a convenient numpy-like format
amenable to many AI/ML methods.

● DA capabilities: This requirement aims to incorporate widely-used statistical analysis tools
into the in-memory data analysis. By making the simulation data from Cassandra available
as an Xarray dataset in Python, as described in above section, Access to intermediate in-
memory results, it seamlessly integrates with the extensive statistical functions provided
by libraries such as NumPy and SciPy. Furthermore, constructing the dataset as lazy data
using Dask arrays enhances efficiency, enabling more effective parallel computation for
statistical analysis. This approach significantly streamlines the process, allowing for
sophisticated data manipulation and examination directly within the in-memory results.

● High-Performance Computing Support: As mentioned in the above section on Portability,
the ESM workflow benefits from containerization. These containers can be constructed
using a container service tailored for HPC centers, enabling their use across various HPC
environments. Additionally, the FESOM2 model, used across numerous HPC centers across
Europe, comes with pre-defined environments that are regularly updated. This ensures
that the model can be compiled and executed smoothly on these platforms, reinforcing the
workflow's adaptability and performance on advanced computing infrastructures.
Furthermore, the containerized version of the FESOM2 model is regularly used for the
continuous-integration tests in its source code repository. This container is portable across
HPC centers with minor changes in the build step.

16

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Figure 10. Illustrates HPC support for using FESOM2 model. The env directory included with FESOM2 source code contains

configurations for different HPC centers that are regularly updated, at the lowest level is a shell file which contains all machine
specific environments for that HPC.

● Multi-member analysis: This requirement focuses on incorporating support for multi-
member analysis into the in-memory data framework as necessary. By making the results
of each simulation member accessible as Xarray datasets, we can utilize Xarray's robust
functionality to integrate multiple datasets along a newly defined ensemble dimension.
This enables analysis across different ensemble members.

Figure 11. Illustrates use of xarray’s features to merge in-memory results from multiple ensemble members to a single dataset for

analysis over ensemble dimension.

17

D5.5 Pillar II - Validation and Evaluation
Version 1.0

4.3 Metrics evaluation
The table of this section is a copy of Table 2 from section 3.1 “Overview of Initial Requirements
and Metrics”, with the additional column “Value”. This new column contains the value for each
metric assessed for the Dynamic ESM simulation workflow.

Table 4. Dynamic ESM simulation workflow metrics evaluation

Acronym Name Description Value

LoC Lines of Code Number of Lines of code in
the workflow implementation.

2951 total

Python ESM code
720 code, 287 comments
635 Python
242 Bash Shell
12 INI

Alien4Cloud topology
118 YAML

Changes in FESOM2
937 Fortran

DoP Degree of
Portability

Percentage of workflow
components that can be
reused in other
infrastructures and
workflows.

100%, with containers and
parameterized execution.

DT Deployment
time

Time elapsed to deploy the
workflow

Under 2 minutes

ET Execution Time Time elapsed to execute a
workflow.

160 seconds on average, with 3
nodes and 144 cores on
MareNostrum4 (excluding queue
time).

SU Speed-up Execution time improvement
when running with larger
resources.

Linear scaling for up to 8000 cores at
core2 configuration (120K surface
nodes) resolution and up to ~35K
cores for NG5 configuration (~7.3M
surface nodes). FESOM2 has been
well tested for scaling in
publications[8].

18

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Eff Efficiency Execution time degradation
when running larger problems.

100 up to the scaling limit.

IOT I/O Time Percentage of Execution time
performing I/O operations.

 55%

FTC Fault-tolerant
components

Percentage of workflow
components that are fault-
tolerant.

100% through pyCOMPSs fault-
tolerance feature.

CH Core/Hour Number hours of a CPU Core
consumed by the workflow
execution.

0.02

EC Energy
Consumption

Energy consumed (Wh or
Joules) associated with a
workflow execution.

2532 W

SYPD Simulated years
per day

Throughput of ESM
simulations

60 SYPD on 400 cores without IO for
low-res climate configuration, core 2
(~120K surface nodes). 6 SYPD for
km-scale configuration (~7.3M
surface nodes) on 25000 cores.

● LoC: Lines of code are calculated with an Open Source tool called pygount5, version 1.6.1.
To replicate these numbers, one can clone the workflow-registry repository, checkout the
main branch, git commit 3275bca60b473abe40378527b250609c4cb75d01, and run
`pygount --format=summary --folders-to-skip awicm3 --suffix "yaml,yml,py,ini,sh" .`. For
the FESOM2 code part, one can clone the repository, switch branches with `git checkout
eflows_hecuba_templates_update`, then use `git log --numstat` to retrieve the number of
lines added and removed, and apply some simple Bash Shell scripting to subtract removed
from added and sum everything to have the number of lines modified: `git log --numstat -
-pretty="%H" master..eflows_hecuba_templates_update | grep -o -P "\d\s+\d" | awk
'{print $1-$2}' | awk '{s+=$1} END {printf "%d\n", s}'`.

● DoP: The FESOM2 model was executed on both MN4 and Levante, following the
compilation instructions from the project documentation (basically issuing a command like
./configure.sh bsc). The rest of the workflow was partially tested on Levante. Alien4Cloud
was used to connect and launch simple jobs in Levante, however, COMPSs and Hecuba
were not successfully installed on Levante, impeding an end-to-end test on Levante. These
issues are related to the installation of infrastructure and tools for the workflow, but the
workflow itself and dependencies are fully portable, also via Singularity containers.

● DT: The deployment time for the Dynamic ESM simulation workflow was measured from
the time a logged-in user in Alien4Cloud started the process to deploy the workflow
application using an existing Alien4Cloud Topology (as described in the workflow registry

5 https://pypi.org/project/pygount/

19

D5.5 Pillar II - Validation and Evaluation
Version 1.0

documentation, and in previous deliverables). It does not account for the time to deploy
Alien4Cloud, FESOM2, HPC modules, Python, and other dependencies and tools used in the
workflow.

● ET: The value provided is for the execution of the workflow on MN4 with the “core2” mesh,
144 cores, using 3 nodes. The simulation used a single ensemble member for the start date
1948.

● SU: Speed-up represents the improvement in execution time when the workflow is
executed using more computing resources FESOM2 scales linearly up to 400 cores at core2
configuration (120K surface nodes) and up to 25K cores for km-scale configuration, NG5.

● Eff: Efficiency is an index that represents the degradation of computation time when
executing larger problems. Up to above mentioned linear scaling limits, efficiency is 100.

● IOT: In the context of in-memory analysis, the input/output (IO) process can present a
significant overhead when compared to conventional IO methods. This is due to the
relatively high-frequency data required for the dynamic analysis step, coupled with the
immediate disposal of data post-analysis, which results in considerable storage space
savings. To evaluate this, a series of tests were conducted comparing the traditional serial
IO backend (netCDF) with the HECUBA backend within the FESOM2 model. The findings
revealed that at a relatively low-resolution (core2), the netCDF output occupied
approximately 40% of the total simulation time, whereas HECUBA accounted for about
55%. This discrepancy suggests that the parallel IO strategy may be inefficient, potentially
due to the transmission of excessively small data chunks to HECUBA, resulting in
considerable time lost in establishing connections to Cassandra. Although it has yet to be
verified, there is a hypothesis that the current parallel, asynchronous IO approach
implemented with HECUBA could yield superior performance in higher resolution
simulations compared to the netCDF backend.

● FTC: Fault tolerance is fulfilled by utilizing pyCOMPSs alongside the embedded
checkpointing feature within the FESOM2 model. PyCOMPSs detects the exit code of the
failed task, enabling its re-execution without restarting the entire process; the FESOM2
model includes an internal checkpointing mechanism by saving its state using a restart file.
So we can consider the percentage of FTC equal to 100%.

● CH: Core/Hour represents the number of hours of a CPU Core consumed by the workflow
execution, as retrieved from the BSC HPC Portal for a successful simulation. The BSC HPC
Portal stores information saved by Slurm in MareNostrum4.

● EC: Energy Consumption represents the energy consumed (Wh or Joules) associated with
a workflow execution, as retrieved from the BSC HPC Portal for a successful simulation. The
BSC HPC Portal stores information saved by Slurm in MareNostrum4. Below, Figure 12,
shows the power consumption (in Watts) comparison of the dynamic ESM workflow and
running the same ESM workflow without the pruning mechanism.

20

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Figure 12. Dynamic ESM workflow power consumption with pruning mechanism enabled on MN4.

It shows power consumption of each node with respect to time by running the dynamic ESM
workflow simulation and by pruning a member, the power consumption gets reduced significantly
thereby saving energy resources leveraging dynamicity of the ESM workflow.

Figure 13. Dynamic ESM workflow (without pruning mechanism enabled) power consumption on MN4.

21

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Figure 13 shows power consumption by running the same workflow but without the pruning
mechanism thereby acting as a standard ESM workflow. Since it lacks the dynamicity of pruning a
member at the runtime of workflow, saving power resources does not happen in these cases.

Likewise, CPU usage between two workflow runs are also displayed in Figure 14, below.

Figure 14. Dynamic ESM workflow CPU usage on MN4.

The overall CPU usage reduced significantly during the dynamic ESM workflow simulation as
compared to the run without pruning mechanism in which the CPU usage remains almost static as
illustrated in Figure 15 below.

Figure 15. Dynamic ESM workflow (without pruning mechanism enabled) CPU usage on MN4.

22

D5.5 Pillar II - Validation and Evaluation
Version 1.0

● AR: Accuracy of the results represents the accuracy of the results obtained through the
workflow implemented during the project compared to the standard procedures currently
used. None of the approaches used in the dynamic ESM model are intended to reduce
accuracy of the simulations unlike some other workflows in eflows4HPC where reduced
precision is used. Hence, we consider this 100 percent.

4.4 External Evaluation
The external evaluation procedure involved representatives from Max-Planck-Institute for
Meteorology (MPI-M) and German Climate Computing Centre (DKRZ). From the MPI-M we were
evaluated by Dr. Lukas Kluft, who has more than 10 years of experience in running very high
resolution climate models, processing of petabyte-scale climate data, development of climate
model I/O, and data pre and post-processing software. From the DKRZ we were evaluated by Dr.
Florian Ziemen, who has more than 10 years of experience in running several climate models of
different complexity, managing petabyte-scale data and developing open source software for
efficient data processing. Both of them are currently involved in projects that develop and run
kilometer scale climate models funded by EU (EERIE, DestinE, nextGEMS) and BMBF (WarmWorld).

Both Dr Ziemen and Dr. Kluft positively evaluated both the Dynamic ESM workflow and additional
functionality developed for ESM simulations in the framework of the eFlows4HPC project. They
praise integration of in-memory data analysis climate modeling, which significantly enhances the
simulation capabilities. Moreover, they note that the project shows successful collaboration across
AWI and BSC, highlighting how this synergy fostered the development of cutting-edge tools and
methodologies. Both experts agreed that the project outcomes meet the initial objectives set in
the beginning of the project.

Dr. Kluft and Dr. Ziemen provided valuable insights and recommendations for enhancing the
project's capabilities. Specifically, they discussed the potential for refining the model's response to
critical events such as cyclones. Dr. Ziemen suggested further exploring use of the Zarr format to
optimize data handling. Additionally, they both highlighted the importance of incorporating fault
tolerance and resilience in the system. These suggestions are aimed at advancing the project's
efficiency in data processing and enhancing its capabilities.

5 Analysis and Feature Extraction Validation
5.1 Workflow Use Case Applications
The statistical analysis and feature extraction workflow of Pillar II exploits the eFlows4HPC
software stack for the integration of the ESM model execution and HPDA and ML approaches in
order to analyze extreme events starting on the output of the ESM simulations. Specifically,
PyCOMPSs allows to orchestrate different tasks of the workflow synchronizing the different tools
and algorithms runs (e.g, Ophidia, Tstorms, ML for Tropical Cyclone, etc.). The following figure
shows a simplified schema of the main blocks of the workflow.

23

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Figure 16. Analysis and feature extraction workflow schema.

The CMCC-CM3 simulation component marks the initial stage within the overarching framework.
Usual configuration runs on 936 cores on Zeus Supercomputer at CMCC (52 full compute nodes)
generating NetCDF files on a daily basis (each approximately 271 MB in size). The subsequent steps
of the workflow occur once the working directory contains files spanning an entire year
(amounting to nearly 100 GB). Facilitating concurrent execution of both ESM simulation and post-
processing is essential, given that the climate simulation may extend over multiple decades (e.g.,
30-35 years) and necessitate several days (or even months) to complete, depending on the HPC
infrastructure employed. As mentioned above, to enable concurrent task execution, PyCOMPSs is
used; more in detail, it employs a streaming interface, which monitors file production progress and
identifies when a complete new year's of data becomes available.

Once a full year of CMCC-CM3 output is available, PyCOMPSs activate the data analytics operators
to compute the extreme climate event indices for heat waves and cold spells. Given the large
volume of data involved, High-Performance Data Analytics (HPDA) operators from the Ophidia
framework are employed to process and aggregate the datasets in parallel. This involves handling
multiple datacubes comprising nearly 1.3 billion data points for extreme event computations.
Additionally, leveraging Ophidia's capability to store datasets in memory between different
operator executions, baseline value files containing long-term historical averages (totaling around
2.6GB) are loaded only once and utilized throughout the workflows for the indexes computation,
thereby reducing the need for recurring read operations from the storage.

Tropical Cyclones (TCs) are intricate phenomena driven by a blend of atmospheric and oceanic
processes. Earth System Models facilitate the simulation of these intricate interactions, offering
valuable insights into their formation, intensification, and trajectories. Nonetheless, identifying
such extremes within extensive climate datasets remains arduous, primarily due to the large
volume of data and the constraints of conventional detection methods. Machine learning (ML)
techniques can aid in extracting significant spatial features associated with TC presence in gridded
climate data.

The ML-enabled TC localization method deployed in eFlows4HPC enables the detection of TC
presence based on a set of input climate variables simulated by ESMs (e.g., temperature, sea level
pressure, wind speed, vorticity), as well as the localization of its center in terms of geographical
coordinates. A Convolutional Neural Network (CNN) built on the Visual Geometry Group (VGG)

24

D5.5 Pillar II - Validation and Evaluation
Version 1.0

architecture, previously trained on historical data, is employed to pinpoint TC centers. The sub-
workflow encompasses five distinct tasks: the first four are carried out for each day of data, while
the last one consolidates the results for an entire year of data. Specifically, the tasks involve: (i)
post-processing of model simulations (e.g., regridding the CMCC-CM3 file), (ii) partitioning of data
into non-overlapping patches and feature scaling, (iii) inference using pre-trained CNNs, (iv) geo-
referencing the predicted TC center coordinates onto a global map, and (v) aggregation of daily
outcomes into a unified NetCDF file for the entire year. Figure 17 shows that process subdivided
in data collection, classification and localization steps.

Figure 17. Inference steps of the ML based approach for the TC detection.

Furthermore, the workflow executes deterministic TC tracking schemes, leveraging the TSTORMS
software, to further validate the findings. This stage involves three tasks: (i) parallel aggregation
of daily files into monthly files, (ii) parallel processing of the twelve monthly files containing 6-
hourly atmospheric variables with TSTORMS to identify points exhibiting TC characteristics, and
(iii) analysis of the files generated in the previous step in conjunction with TSTORMS to trace
potential TC points and extract TC trajectories. The PyCOMPs streaming interface is also utilized in
this scenario to monitor file production progress and detect the availability of the twelve monthly
files.

The case study was conducted on a geographically distributed infrastructure, utilizing the
HPCWaaS interface hosted on a service node located at the Barcelona Supercomputing Center
(BSC) in Barcelona, Spain. Meanwhile, the entire workflow was carried out on the Zeus
supercomputer situated at CMCC in Lecce, Italy. The Alien4Cloud service, operating at BSC,
facilitated the deployment of the environment onto the Zeus CMCC cluster and the submission of
the workflow. This was achieved by remotely interacting with the cluster scheduling system,
exploiting the configuration outlined in the TOSCA topology. PyCOMPSs coordinated the execution
of individual workflow tasks on Zeus.

A further test was deployed using two different HPC architectures: Zeus at CMCC and Nord3 at
BSC. In particular, the CMCC-CM3 model is run on Zeus at CMCC. At the end of the production of
each year of simulation, the output is transferred (the python script ssh2ssh is used) on the Nord3
machine to the BSC where the workflow continues with the pipeline relating to the analytics and
TC detection phase. A4C drives the stage-in of the necessary inputs at the two target
infrastructures while PyCOMPSs the distributed execution of the two different workflow phases.
Figure 18 shows the different modules and where they are executed.

25

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Figure 18. Analysis and feature extraction workflow distributed at CMCC and BSC.

5.2 Requirements validation

Table 5. Analysis and feature extraction workflow requirements validation

ID Name Description Priority Status

1 Execution
Robustness

Management of fault tolerance during the
workflow execution including checkpoints
or retries. For example, during a large
execution if a node fails, the workflow must
be able to recover and continue to the end.

Should
Using PyCOMPSs and
CMCC-CM3
resubmission
capability

2 Portability Workflow components should be portable
to various types of HPC infrastructures.

Should Docker/Singularity
containers

3 Integrated
workflow
manageme
nt

Requires the Management of task
dependencies, execution of parallel
simulations on different HPC
infrastructures, management of batch jobs
(submission, monitoring, cancellation),
management of conditional paths in a
transparent way.

Must

By PyCOMPSs
capabilities

4 Integration
with long-
term
archive/rep
ository
storage

Results may be stored in long-term storage
for archiving purposes, second use (e.g.
downstream services) and/or to satisfy
FAIRness policies.

May
Using DLS capabilities
on B2SHARE

26

D5.5 Pillar II - Validation and Evaluation
Version 1.0

5 Workflow
adaptabilit
y

Capability to easily manage, cancel, replace
and add components invocations in the
workflow, for instance allowing the
execution starting from the n-th step.

Should Simplified version
avoid the CMCC-CM3
model run + internal
computation of
climatological mean

6 Access to
intermedia
te in-
memory
results

The workflow should be able to retrieve
data/intermediate outputs of the running
processes directly from memory.

Must
Exploiting
Ophidia/xarray in
memory storage

7 ML/DL
capabilities

Requires the support for training and
inference of Neural Network models for
example for Tropical Cyclone detection.

Must
ML approach for TC
detection

8 DA
capabilities

Support for descriptive analytics (e.g.,
statistical analysis) exploiting fast in-
memory analysis.

Must Exploiting
Ophidia/xarray in
memory analysis
capabilities

9 High
Performan
ce
Computing
support

Climate models have to be executed on
computing infrastructures capable of
providing a large amount of processing
and memory resources.

Must
Run allowed on
Zeus/Nord3

10 Multi-
member
analysis

Support for concurrent execution of
sub-workflows starting from different
inputs (configurable) and comparison
of the sub-workflows results.

Must CMCC-CM3 run
configurable and
executions outputs
comparable (e.g.,
different reference
years)

In the following the different requirements are evaluated.

● Execution robustness: This requirement is met through the use of PyCOMPSs and the
checkpointing embedded into the CMCC-CM3 model. In the first case, PyCOMPSs allows to
re-execute the failed task by detecting the process exit code. This allows re-execution of
the task and continuation of the workflow without re-executing the entire workflow. In the
second case, the CMCC-CM3 model exploits an internal checkpointing mechanism; through
this setting (which can be enabled or disabled when submitting the run) the model is able
to save its state at regular intervals using a set of files called restart files. In the event that
the execution were to fail, the implemented workflow uses PyCOMPSs for the retry and
restart files to continue the simulation starting from the time step that caused the fault.

● Portability: This requirement can be satisfied through the containerization of the
workflow, the tools and applications necessary for its execution and the HPCWaaS service

27

D5.5 Pillar II - Validation and Evaluation
Version 1.0

offered by eFlows4HPC or by providing standard installation procedures exploiting well-
known and supported packages. More specifically, some components of the workflow have
been containerized using docker and singularity which allows portability across different
HPC infrastructures. The use of Spack also facilitates the configuration procedure of the
various modules while the A4C framework associated with Yorc allows deployment and
subsequent execution on the identified target architecture. Concerning the remaining
components, they rely on common packages and libraries, available for the main
infrastructures and O.S. Figure 19 shows the A4C interface where it is possible to select the
execution target environments.

Figure 19. A4C interface for the selection of the target environments.

● Integrated workflow management: This requirement is satisfied through the use of the
software stack provided by eFlows4HPC and in particular by exploiting the capabilities
offered by PYCOMPSs. In fact, PYCOMPSs is able to manage the entire workflow in terms
of dependencies between tasks both about the sequence of operations to be performed
(task dependency) and with regards to the dependency of the inputs and outputs (data

28

D5.5 Pillar II - Validation and Evaluation
Version 1.0

dependency). For example, in the first case, two tasks that must be executed sequentially
belong to two different and sequential statements in their PYCOMPSs definition

An example of the second case, however, can be identified in the functionalities provided
by the Streamin function of PYCOMPSs, used within the workflow: in this case an operation
defined through a task is delayed until the proper inputs are available, i.e. until the previous
task produced the necessary outputs. Within the workflow this function is used to properly
synchronize the production of the necessary NetCDF files by the CMCC-CM3 model and the
subsequent heat/cold waves indices computation and tropical cyclone detection
operations.

29

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Furthermore, the management of batch job submission, as well as monitoring and their
cancellation, is managed at a high level via A4C which allows to start the run of the
workflow, monitor its status and possibly stop its execution.

● Workflow adaptability: This requirement concerns the possibility of managing,
eliminating, replacing or adding components invocations in the workflow. This possibility is
satisfied by the modularity with which the workflow was designed and by the conditional
paths inserted into it. An example is given by the calculation of the climatological mean,
necessary for the calculation of heat waves and cold spells; in fact, in this case, the
workflow is set up to act in two distinct modes. The first method concerns the loading of
these values from a pre-produced file: in this case, the corresponding climatological mean
values have previously been saved to a file and the ingestion phase in Ophidia occurs only
once. In the second case, however, Ophidia is able to calculate the climatological mean
from the complete set of annual files (a total of 20 years) produced by the model; in this
case, the process is obviously slower due to the large amount of data to be processed
(about 2 TB).

To speed up this process, however, a new functionality has been implemented in
eFlows4HPC for the direct calculation of the climatological mean vs the previous
mechanism which used multiple operations in sequence.

● Access to intermediate in-memory results: This requirement is met by using the Python
Xarray library and Ophidia. Both, in fact, allow keeping the data in memory for subsequent
processing without necessarily having to download it to storage. In particular, xarray uses
the Dataframe in-memory data format that can be shared between subsequent
instructions in order to avoid saving to disk.

30

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Ophidia, on the other hand, natively enables in-memory analysis, keeping in memory the
datacubes needed for subsequent analyzes. Within the implemented workflow, this is for
example the case of the climatological mean which is loaded into Ophidia's in-memory
storage only once and then used for each year of simulation produced by the CMCC-CM3
model for the calculation of the heat wavers and cold spells. Furthermore, Ophidia allows
distributing the information related to a datacube across the memory of multiple
computing nodes, allowing on the one hand the possibility of using a larger memory space
and, on the other, processing the information in memory in parallel using multiple involved
tasks.

● ML/DL capabilities: In the implemented workflow, the tropical cyclone detection phase
follows an approach designed in eFlows4HPC and based on Machine Learning techniques.
Through the use of PyCOMPSs, the execution of the algorithm is inserted as a task within
the overall workflow, before the production of the final maps and following the run of the
CMCC-CM3 model, in parallel with the run of the operations performed by Ophidia for the
calculation of heat/cold waves.

● DA capabilities: This requirement concerns the support for descriptive analytics exploiting
fast in-memory analysis. This requirement is satisfied by using the xarray library and
Ophidia. Both, in fact, allow you to carry out statistical analysis operations in memory,
applied, for example, via Ophidia for the calculation of heat/cold waves indices.
Furthermore, as previously mentioned, Ophidia is able to use its data analytics functions
by also taking advantage of the parallelism offered by an HPC infrastructure.

● High Performance Computing support: This requirement concerns climate models that
need computing infrastructures capable of providing a large amount of processing and
memory resources to be executed. It is satisfied because the model used (CMCC-CM3
coupled model) is executed on HPC infrastructure. In more detail, it requires 936 cores for
its execution, 540 for its atmospheric component, 396 for its oceanic component. Figure
20, shows a schema of the CMCC-CM3 coupled model along with the different
components.

Furthermore, the entire workflow is performed on HPC infrastructure, not only the climate
model but also the analysis of extreme events (tropical cyclones detection and extreme
events indices computation).

● Multi-member analysis: This requirement concerns the possibility of supporting concurrent
executions of sub-workflows starting from different inputs in a configurable manner and
the possible comparison of the results related to the sub-workflows. This requirement is
satisfied through the use of the software stack provided by eFlows4HPC, the architectural
design and the internal properties of the software/tools used. More in detail, the CMCC-
CM3 model is configurable by modifying the input parameters; in particular it is possible to
change the input files (forcings) and the initial configuration. The workflow design
combined with the HPCWaaS architecture allows performing concurrent runs of the model
and comparing the outputs that are stored in the user's personal repository.

31

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Figure 20. Components of the CMCC-CM3 coupled model.

5.3 Metrics evaluation
Table 6. Analysis and feature extraction workflow metrics evaluation

Acronym Name Description Value

LoC Lines of Code Number of Lines of code in
the workflow
implementation.

450 (Python code)

DoP Degree of
Portability

Percentage of workflow
components that can be
reused in other
infrastructures and
workflows.

80%

DT Deployment
time

Time elapsed to deploy the
workflow

38 seconds

ET Execution Time Time elapsed to execute a
workflow.

341.2 seconds

SU Speed-up Execution time improvement
when running with larger
resources.

Scaling up the number of
computing nodes from 2 to 32:
68.4% in the worst case

Eff Efficiency Execution time degradation
when running larger problems.

Scaling up the number of
computing nodes and input data:
69% in the worst case

32

D5.5 Pillar II - Validation and Evaluation
Version 1.0

IOT I/O Time Percentage of Execution time
performing I/O operations.

84.72%

FTC Fault-tolerant
components

Percentage of workflow
components that are fault-
tolerant.

100% (PyCOMPSs allows the rerun
of the wf tasks)

CH Core/Hour Number hours of a CPU Core
consumed by the workflow
execution.

~ 6400 CPU/hours + 12 GPU/hours

EC Energy
Consumption

Energy consumed (Wh or
Joules) associated with a
workflow execution.

140.4 W

AR Accuracy of
the results

Accuracy of scientific
results should not degrade.

95.36%

● The LoC are calculated considering the PyCOMPSs workflow from the submission to the
final extraction of the maps and results. Compared to the first project phase, the number
of lines of code was reduced from 949 to 450 thanks to a series of code optimizations and
a more extensive use of PyCOMPSs.

● The DoP represents the percentage of the number of workflow components that can be
reused in other infrastructures. The CMCC-CM3 model represents a component that is not
portable to other infrastructures. As regards the remaining part of the workflow, the
individual components are portable on different infrastructures: Ophidia has been
containerized and is available as a docker and singularity image, the ML algorithm requires
standard Python libraries (such as tensorFlow and xarray), while the tool TSTORMs is third-
party software and has a standard installation in a Linux environment. Overall, therefore,
we can estimate that the portable percentage of the workflow is equal to 80%.

● The DT represents the time needed to deploy the workflow. For the analysis and feature
extraction workflow it represents the time necessary to activate the run of the CMCC-CM3
model, corresponding to the first task of the workflow, on the target infrastructure (Zeus
at CMCC) via the interface provided by A4C, approximately 38 seconds.

● The ET represents the execution time for executing the entire workflow. The total time for
the execution of the workflow is equal to 341.2 seconds. It is important to underline that,
if we compare the execution time at the beginning of the project, it was reduced from over
18 minutes to just under 6 minutes (with the same number of cores and temporal
timesteps analyzed). This optimization was obtained through the new implementations
carried out in eFlows4HPC (for example the new procedure for calculating the
climatological average). As regards the ML algorithm for the detection of tropical cyclones,
the inference phase is part of the overall workflow and is included in the total workflow
time; however, as regards the training phase, the training time has been reduced from over
five hours to just under three using a better memory and I/O management.

33

D5.5 Pillar II - Validation and Evaluation
Version 1.0

● SU represents the improvement in execution time when the workflow is executed using
more computing resources. The speed up was calculated considering the analysis pipeline,
including the calculation of heat waves and cold spells indices and the detection of TCs (in
fact, the CMCC-CM3 model runs with a fixed number of cores per configuration used).
Figure 21 shows the speed-up calculated as the computational resources used increase.
The test involved up to 32 computing nodes of the Zeus supercomputer at CMCC,
corresponding to 1152 cores used and was performed considering the run of the analysis
pipeline on the output of one year of the CMCC-CM3 model, corresponding to 98.92 GB.

Figure 21. Speed-up of the analysis and feature extraction workflow.

● Eff is an index that represents the degradation of computation time when executing larger
problems. As in the previous case and for the same reasons the calculation was performed
considering the analysis pipeline. In this case (Figure 22), the test was performed using up
to 32 nodes of the Zeus supercomputer and varying the input data from 6.18 GB up to
98.92 GB.

Figure 22. Efficiency of the analysis and feature extraction workflow.

34

D5.5 Pillar II - Validation and Evaluation
Version 1.0

● IoT represents the percentage of execution time dedicated to IO operations. In climate
analyses, the IO phase usually covers a large part of the execution time as the amount of
data being read and written is very high. The CMCC-CM3 model, for example, has a
production rate of 0.36 SYPD (0.36 years of simulated products per day of execution) and
every year produces datasets of 100GB in size (without considering the accessory and
restart files). The post-processing and data analytics phase involved in eFlows4HPC starts
from these datasets to start its execution. In eFlows4HPC optimizations have been used
and implemented for the reduction of I/O time which still covers 84.72% of the total
execution time.

● FTC represents the percentage of workflow components that are fault-tolerant. As already
mentioned in the requirements description, the fault tolerance is fulfilled by utilizing
PyCOMPSs alongside the embedded checkpointing feature within the CMCC-CM3 model.
PyCOMPSs detects the exit code of the failed task, enabling its re-execution without
restarting the entire process; the CMCC-CM3 model includes an internal checkpointing
mechanism by saving its state using a set of restart files. So we can consider the percentage
of FTC equal to 100%.

● CH represents the number of hours of a CPU Core consumed by the workflow execution.
For this metric we considered the entire workflow, including the run of the CMCC-CM3
model and subsequent pipeline related to the calculation of heat/cold waves and TC
detection. In total the workflow uses approximately 6400 cores/hours. Furthermore, the
training phase of the ML model takes 12 GPU/Hours

● EC represents the energy consumed associated with a workflow execution. This test was
carried out considering the energy used on 3 computing nodes of the Zeus supercomputer
during the analytics pipeline on the outputs of the CMCC-CM3 model related to a year of
simulation. The energy consumed by the process corresponds to about 140.4W

● AR represents the accuracy of the results obtained through the workflow implemented
during the project compared to the standard procedures currently used. In particular, the
machine learning process for the detection of tropical cyclones was taken into
consideration for the analysis, comparing the results with the TSTORMs tool, currently
considered the de facto standard for this type of analysis. The accuracy of the ML process
itself is at 95.36% regarding the ML test phase, Figure 23 shows a comparison map between
the output of the algorithm implemented in eFlows4HPC and the TSTORMs tool.

Figure 23. Comparison between the TSTORMS and the ML approach results.

35

D5.5 Pillar II - Validation and Evaluation
Version 1.0

5.4 External evaluation
The external evaluation procedure involved the CMCC staff belonging to the project and Dr.
Stefano Natali, co-founder, managing director and space business manager of MEEO Srl (Italy) and
SISTEMA GmbH (Austria). He has more than 20 years' experience in the analysis of satellite data,
for atmospheric and biophysical parameters retrieval. He has more than 15 years' experience in
project management in European Commission, European Space Agency and national projects and
he is fully involved in the development and adoption of the Advanced geospatial DAta
Management platform (ADAM) to facilitate the access and exploitation of a large variety and
volume of geospatial data.

Dr. Natali positively evaluated the work carried out in the eFlows4HPC project, judging the project
and case study to be very interesting and ambitious and the architecture well structured. He also
positively assessed that all the requirements presented at the beginning of the project had been
satisfied.

Finally, he gave a series of useful feedback regarding the possibilities of extending and optimizing
the case study and the applied procedures. In particular, regarding the ML procedure applied, he
suggested verifying the adoption of other climate models than those currently used (ERA5 for
training and CMCC-CM3 for inference). This could reduce the number of false positives extracted
by both the ML procedure and the TSTORMS tool. He also suggested applying the heat waves and
cold spells indices computation procedure on a larger dataset in order to reduce the impact of the
overhead.

6 Conclusions and recommendations
The two workflows implemented in the context of Pillar II - Dynamic and adaptive workflows for
climate modeling, highlight the effectiveness of the application of the HPCWaaS paradigm and the
software stack provided by the eFlows4HPC project in the context of climate research applications.
The requirements defined at the beginning of the project were satisfied and the metrics
demonstrated the effectiveness in the implementation of the two workflows. Furthermore,
external evaluations demonstrated the correct implementation and applicability in the scientific
context, reporting useful advice and considerations for future developments.

As general recommendations and future developments we can take the following into
consideration:

● Alien4Cloud will not be further maintained, so the entry point of the end-to-end workflows
would need to be ported to some other solution. In this sense, the experience acquired,
the decoupling of the pipelines executed on the target machines (driven by PyCOMPSs)
from the submission mode (driven by A4C and Yorc), along with the TOSCA configuration
that could be re-used in other platforms (such as LEXIS[2], a EU platform maintained by
IT4Innovations (CZ)) will make straightforward the migration to other solutions;

● It would be possible to evaluate other workflow management solutions, such as Cylc[3],
ecFlow[4] or Autosubmit[5], more commonly used in the climate context, with some
adaptations to the control mode of the ensemble members which would make the
Dynamic ESM workflow more portable;

36

D5.5 Pillar II - Validation and Evaluation
Version 1.0

● Despite demonstrating potential of In-memory analysis with Cassandra as backend, at least
in terms of saving storage space and dynamic workflows, it may still need fine tuning for
effectiveness and evaluate it against higher resolution simulations. It is also interesting to
compare using other databases such as Redis as IO backends.

● The statistical analysis and feature extraction workflow could be applied starting from the
products of other climate models or in other contexts. In the first case, higher horizontal
resolution datasets could be used. In the second case, ocean models could be used in order
to calculate indices relating to marine heat waves or for the detection of marine eddies.

● The statistical analysis and feature extraction workflow could be embedded within the
CMCC-CM3 model in order to directly access the data produced even before they are saved
to disk. There are specific solutions (e.g. XIOS[6]) coupled with the climate model useful for
extracting various types of statistical information but they are linked to the model they
belong to and there is a lack of a general purpose solution that can be applied to multiple
models or to models that belong to a certain context (e.g., ocean models).

37

D5.5 Pillar II - Validation and Evaluation
Version 1.0

7 Acronyms and Abbreviations
● ESM: Earth System Model

● HPC: High-Performance Computing

● MN4: MareNostrum 4

● TOSCA: Topology and Orchestration Specification for Cloud Application

8 List of figures and tables
Figure 1. Alien4Cloud screenshot of the ESM_Workflow topology. ... 6
Figure 2. Simulation run configuration, with user provided parameters to control the model
configuration. .. 7
Figure 3. Illustration of all the parts of the dynamic ESM simulation workflow. 8
Figure 4. Pruning an ensemble member task called from the terminal. .. 9
Figure 5. Input datasets stored on DKRZ’s swift storage, these can be downloaded on-the-fly in any
workflow to start simulations using FESOM2. .. 12
Figure 6. Illustrates workflow task to download necessary input data required for FESOM2
simulation from a cloud store before simulation. ... 13
Figure 7. Illustrates workflow task to upload the simulation results to cloud storage either during
simulation or at the end of the simulation. ... 13
Figure 8. Simulated sea-ice fraction from test configuration (left, 3140 surface nodes), climate
configuration (~120K surface nodes), and high resolution configuration (~7.3M surface nodes).
These configurations can easily be changed within the workflow. .. 14
Figure 9. Illustration of in-memory data represented as an Xarray dataset: it shows the conversion
of simulation results into an Xarray dataset format, showcasing dimensions, data variables, and
their respective underlying dask array structures for lazy, and efficient parallel computation. These
arrays are compatible with numerous statistical functions of numpy and scipy. 14
Figure 10. Illustrates HPC support for using FESOM2 model. The env directory included with
FESOM2 source code contains configurations for different HPC centers that are regularly updated,
at the lowest level is a shell file which contains all machine specific environments for that HPC. 16
Figure 11. Illustrates use of xarray’s features to merge in-memory results from multiple ensemble
members to a single dataset for analysis over ensemble dimension. .. 16
Figure 12. Dynamic ESM workflow power consumption with pruning mechanism enabled on MN4.
 ... 20
Figure 13. Dynamic ESM workflow (without pruning mechanism enabled) power consumption on
MN4. .. 20
Figure 14. Dynamic ESM workflow CPU usage on MN4. ... 21
Figure 15. Dynamic ESM workflow (without pruning mechanism enabled) CPU usage on MN4... 21
Figure 16. Analysis and feature extraction workflow schema. ... 23
Figure 17. Inference steps of the ML based approach for the TC detection. 24
Figure 18. Analysis and feature extraction workflow distributed at CMCC and BSC. 25
Figure 19. A4C interface for the selection of the target environments. ... 27
Figure 20. Components of the CMCC-CM3 coupled model. ... 31
Figure 21. Speed-up of the analysis and feature extraction workflow. .. 33
Figure 22. Efficiency of the analysis and feature extraction workflow. .. 33

38

D5.5 Pillar II - Validation and Evaluation
Version 1.0

Figure 23. Comparison between the TSTORMS and the ML approach results. 34

Table 1. Requirements of the ESM workflow and its components. .. 4
Table 2. Metrics for evaluation of ESM workflows. .. 5
Table 3. Dynamic ESM simulation workflow requirements validation ... 9
Table 4. Dynamic ESM simulation workflow metrics evaluation .. 17
Table 5. Analysis and feature extraction workflow requirements validation 25
Table 6. Analysis and feature extraction workflow metrics evaluation .. 31

9 References
[1] Bradner, S. O. (1997). Key words for use in RFCs to Indicate Requirement Levels. RFC 2119.
Request for Comments. https://rfc-editor.org/rfc/rfc2119.txt

[2] LEXIS Project: https://lexis-project.eu/web/

[3] Cylc: https://cylc.github.io/

[4] ecFlow: https://ecflow.readthedocs.io/en/latest/index.html

[5] Autosubmit: https://autosubmit.readthedocs.io/en/master/

[6] XIOS: http://forge.ipsl.jussieu.fr/ioserver

[7] Xarray: https://docs.xarray.dev/en/stable/

[8] Scalability and some optimization of the Finite-volumE Sea ice–Ocean Model, Version 2.0
(FESOM2), Koldunov et al. 2019, https://doi.org/10.5194/gmd-12-3991-2019

[9] Dask: https://docs.dask.org/en/stable/

9.1 Software Repositories
Name of Software Description, link

COMPSs
COMPSs encapsulates PyCOMPSs that is used to orchestrate the
workflow tasks.
https://github.com/bsc-wdc/compss

Eflows4HPC software Catalog
This repository contains specifications to build softwares used in
workflow either in containers or directly on a HPC.
https://github.com/eflows4hpc/software-catalog

WORKFLOW REGISTRY

This repository contains all the workflows across Eflows4HPC WPs.
Pillar_II directory contains workflows for this Pillar.
https://github.com/eflows4hpc/workflow-registry

HECUBA
HECUBA provides an efficient API to store and retrieve data for in-
memory analysis for Dynamic ESM workflows.
https://github.com/bsc-dd/hecuba

FESOM2

FESOM2 is the ocean-climate model used in Dynamic ESM workflows.
Following branch contains modifications to its source with
HECUBA/CASSANDRA as IO-backend and for workflows.
https://github.com/FESOM/fesom2/tree/eflows_hecuba_templates_
update

https://rfc-editor.org/rfc/rfc2119.txt
https://rfc-editor.org/rfc/rfc2119.txt
https://lexis-project.eu/web/
https://cylc.github.io/
https://ecflow.readthedocs.io/en/latest/index.html
https://autosubmit.readthedocs.io/en/master/
http://forge.ipsl.jussieu.fr/ioserver
https://docs.xarray.dev/en/stable/
https://doi.org/10.5194/gmd-12-3991-2019
https://docs.dask.org/en/stable/
https://github.com/bsc-wdc/compss
https://github.com/eflows4hpc/software-catalog
https://github.com/eflows4hpc/workflow-registry
https://github.com/bsc-dd/hecuba
https://github.com/FESOM/fesom2/tree/eflows_hecuba_templates_update
https://github.com/FESOM/fesom2/tree/eflows_hecuba_templates_update

39

D5.5 Pillar II - Validation and Evaluation
Version 1.0

OPHIDIA
OPHIDIA provides an efficient API to perform in-memory analysis for
Analysis and Feature Extraction workflows.
https://github.com/OphidiaBigData

https://github.com/OphidiaBigData

	1 Executive Summary
	2 Introduction
	2.1 Purpose and Scope of the Report
	2.2 Outline

	3 Workflow Requirements and Validation Methodology
	3.1 Overview of Initial Requirements and Metrics

	4 Dynamic ESM simulation workflow Validation
	4.1 Workflow Use Case Applications
	4.2 Requirements validation
	4.3 Metrics evaluation
	4.4 External Evaluation

	5 Analysis and Feature Extraction Validation
	5.1 Workflow Use Case Applications
	5.2 Requirements validation
	5.3 Metrics evaluation
	5.4 External evaluation

	6 Conclusions and recommendations
	7 Acronyms and Abbreviations
	8 List of figures and tables
	9 References
	9.1 Software Repositories

