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1. Executive Summary 
This deliverable describes the status of the implementation of the two workflows corresponding to Pillar 
III: Urgent computing for natural hazards. With this implementation, it is intended to use the eFlows4HPC 
components to boost urgent computing simulations for earthquakes and tsunamis.  

With this first implementation, and after a deep analysis of both workflows dependencies, it has been 
possible to establish a first iteration that contemplates the characteristics expected at this point in the 
project, having ported most components of UCIS4EQ and PTF/FTRT workflows to PyCOMPSs , adding new 
functionalities such as a near-real-time source-estimation manager to initialize PTF ensemble forecast 
based on earthquake data, and also performing numerous simulations using HPC resources as a testing 
phase.  

This development, together with what is expected in the following phases, will allow faster end-to-end runs 
to be executed, with more robust and reliable workflows, and outcomes more usable to potential end-
users, thus achieving the main objective of WP6 in this project. 

 

2. Introduction 
Earthquakes and consequent tsunamis are unpredictable events and capable of catastrophic impact on 
human lives, infrastructure, and economy. The unpredictability of their occurrence poses a challenge to the 
scientific community, as an assessment of the impact severity needs to happen in a very limited time and 
based upon relatively sparse data. Accurate, efficient, and rapid mathematical/computational modelling is 
thus called upon to provide hazard assessments.  

The workflows to be implemented need to provide timely, accurate, and reliable information to decision 
makers. Both earthquake and tsunami workflows involve rapid simulation of the hazard phenomena and 
these parts of the processes invariably need to be performed in HPC infrastructure. The workflows require 
initialization immediately following an event, urgent access to HPC facilities, and post-processing and 
visualization steps which make their output available to the end users. 

The main objective of Pillar III is the development and adaptation of workflows, both for earthquakes and 
tsunamis, providing a common orchestration to easily integrate into HPC environments. 

This deliverable accompanies the first versions of the workflows developed in Tasks 6.3 and 6.4: iteration 1 
for “workflows for urgent computing of natural hazards”, which are widely detailed in Deliverable 6.1 (see 
URL in reference section). 

 

3. Implementation status of Pillar III workflows  
This section describes in detail the current implementation status of the two workflows: the seismic 
workflow (UCIS4EQ) and the tsunami workflow (PTF/FTRT). Both workflows of Pillar III have been developed 
independently, making use of different HPC simulation codes and with different sets of requirements, as 
well as pre- and post-processing strategies and approaches. 
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3.1. The Seismic Workflow (UCIS4EQ)  
The Urgent Computing Integrated Services for Earthquakes (UCIS4EQ) workflow is a suite of microservices 
defined as building blocks i.e., independent components of the system that carry out specific tasks. UCIS4EQ 
has the potential to deliver more accurate short-time reports of the consequences of moderate to large 
earthquakes. UCIS4EQ rapidly provides synthetic estimates of ground motion parameters, such as peak 
ground velocity, peak ground acceleration, or shaking duration, with very high spatial resolution. Such 
outcomes can be used to analyse the overall ground motions in the area as well as potential impacts on key 
infrastructures that could produce collateral risks (fires, dam rupture, among others). 

The UCIS4EQ implementation in the eFlows4HPC software stack in the Iteration 1- Phase 2 (M7-M20) has 
been defined by five main activities described below.  

 

 
Figure 1: A simplified representation of the UCIS4EQ workflow with the eFlows4HPC activities described in this deliverable marked 

with red and green rectangles. 

 

UCIS4EQ Activity 1: Porting UCIS4EQ to PyCOMPSs for a new release of the application (BSC).  

At the beginning of the first phase of the project, we identified the support in PyCOMPSs (Tejedor et al., 
2017) for the micro-services design structure of the UCIS4EQ service as a key requirement. The requirement 
has been satisfied and PyCOMPSs has been integrated as a WF manager to orchestrate most of the building 
blocks of the UCIS4EQ shown in the red rectangle of Figure 1. PyCOMPSs thus replaces the existing WF 
manager emulator that has been managing the tasks sequentially in the previous UCIS4EQ version. Given 
that the code licensing is still pending and remains an ongoing task, this first migration of PyCOMPSs is 
presented in this first release via a mock-up version of UCIS4EQ that mirrors the actual implementation in 
the full service and that allows to analyse the dependencies between inputs and outputs of the different 
microservices. It should be highlighted that the UCIS4EQ implementation is the first service where 
PyCOMPSs is orchestrating microservices and not only tasks. We thus successfully demonstrate new 
capacities of PYCOMPSs - developed during the eFlows4HPC project - as a Workflow manager.  
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The PyCOMPSs implementation with the restructured version of the service (see Activity 5 below) has been 
tested on CSCS’ Piz Daint with a full high-frequency end-to-end execution on GPUs, spanning 22 HPC jobs 
on 90 GPUs each with a wall-time of about 80 minutes per job. 

See Section 4 to the link of the mock-up version  

 

UCIS4EQ Activity 2: Managing the initialization and the updates of ensembles of seismic sources for 
uncertainty quantification within UCIS4EQ, as a prototype (INGV).  

In this activity we were working on implementing a new method to manage the uncertainty on the seismic 
source parameters through the definition of an ensemble of simulations that explore such uncertainty. The 
implemented method, named SeisEnsMan, is derived from the method described in Selva et al. (2021) for 
the Probabilistic Tsunami Forecasting (PTF). This component shares commonalities with the equivalent 
activity (Step 1) in the tsunami workflow described in Section 3.2, harmonizing the workflows for 
earthquakes and tsunamis generated by the same seismic source.  

The SeisEnsMan block managing the ensemble in UCIS4EQ is derived from Step1 of the tsunami workflow, 
and it introduces several specializations required for better managing the specific needs of seismic sources. 
In particular, a finer sampling of source parametrization is foreseen to manage near-source uncertainty, 
which is essential for seismic applications that are focused in target areas closer to the seismic source than 
the ones for tsunamis.   

The new parametrization has been tested by studying the convergence of the uncertainty quantification, 
adopting standard Ground Motion Prediction Equations (GMPE) models to evaluate the potential seismic 
impact of the different sources. The defined analysis will be the basis for testing the convergence 
performance of the ensembles considering a set of past earthquakes, as well as for monitoring the need of 
further simulations in real-time applications of UCIS4EQ.  

In the present version, SeisEnsMan takes as input the essential seismic source parameters (magnitude and 
hypocentral location) and provides an ensemble of scenarios describing the source uncertainty and a list of 
probabilities describing how applicable each scenario is to the target event. In the next iteration, we 
anticipate an update to SeisEnsMan to allow an update of the list of scenarios and their probabilities 
considering new information (for example new source information, e.g. focal mechanisms, or updated 
seismic observations, e.g. from accelerograms), and through developing a tool to monitor the convergence 
of uncertainty quantification based on GMPE models.  

The most recent version of SeisEnsMan is available in the the GitLab repository listed in Section 4. 

SeisEnsMan has recently been embedded into a Docker container to fulfill the requirements of integration 
within the UCIS4EQ micro-services design structure (for details on the UCIS4EQ design, see Deliverable 6.1). 
Like other elements of the UCIS4EQ, the Docker container is now built as an application that is ready to be 
called within the workflow, but will be run with its own specific environment. Integration and testing of the 
SeisEnsMan component in the UCIS4EQ service is now ongoing. 

 

UCIS4EQ Activity 3: Producing new Earth models for the regions of interest defined in Task 6.2 (ETH). 

In Iteration 1 Phase 2, we integrated generating models from the Collaborative Seismic Earth Model (CSEM, 
see URL in reference section), developed at ETH Zurich, into the Salvus_urgent_wrapper package that 
integrates the pre- and post-processing for the Salvus wave propagation software into UCIS4EQ. A model 
for any given region can now be extracted and interpolated directly onto a computational mesh, without 
the intermediate step of generating a separate model file for the region (thus reducing the number of 
interpolation steps). The CSEM model is a global multi-scale model, giving UCIS4EQ the flexibility of defining 
a new computational domain anywhere: effectively we now have a global database of available Earth 
models within the service. The UCIS4EQ Salvus_urgent_wrapper package that provides the Salvus pre- and 
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post-processing can either generate meshes with CSEM on-the-fly (that is, right before the simulation), or 
they can be pre-computed and subsequently read-in for pre-processing. 

Meshes with model values from CSEM interpolated onto the computational grid have been generated for 
the regions and events defined in Deliverable D6.2 (see URL in reference section) for maximum frequencies 
of 2Hz and 5Hz.  Although the global CSEM model is not event-specific, the meshes in the current UCIS4EQ 
implementation are event-specific given the computational resources and the status of the service 
development, and thus include very small sub-models.  

The six meshes (three events, two meshes each) reside on the two clusters where we run the UCIS4EQ 
service, that is on MareNostrum4 (BSC, Spain) and on Piz Daint (CSCS, Switzerland): 

1. The Mediterranean Sea: the 2017 M6.6 Kos-Bodrum earthquake, 120 km x 100 km domain @2Hz 
and @5Hz (385 MB and 2.7 GB, respectively). 

2. Mexico: the 2017 M7.1 Puebla earthquake, 175 km x 210 km domain @2Hz and @5Hz (1.3 GB and 
12 GB, respectively). 

3. Iceland: the 2000 (June 21) M6.5 SISZ earthquake, 135 km x 85 km domain @2Hz and @5Hz (645 
MB and 4.7 GB, respectively). 

In the next phase, we will attempt to refine selected regional models with short-period full-waveform 
inversion (FWI), provided that the available seismic data allows for further reductions in the misfit. 

 

UCIS4EQ Activity 4: Developing ML methodology as proof of concept using dislib and EDDL libraries (BSC).  

In this activity, we have been developing the proof-of-concept to enable ML-based methodologies that can 
complement or replace the 3D physical simulators and hence significantly reduce the time-to-solution of 
our urgent computing solution and/or help us explore uncertainties quickly and reliably. To reach this 
objective, the MLESmap building block is included in the UCIS4EQ workflow as a method set up before an 
operational execution of UCIS4EQ. MLESmap aims to quickly assess ground-motion intensity maps through 
ML inferences trained from physics-based earthquake simulations. In order to feed our MLESmap 
technology, a large set of intensity measures for likely earthquakes in the study region is generated, which 
can be obtained from 3D scenario simulations. We are familiar with the Cybershake software, which is 
installed at MareNostrum4 in collaboration with the Southern California Earthquake Center (SCEC). The 
Cybershake package (Graves et al., 2011) has reciprocity capabilities, which allows the modelling of an 
almost arbitrary number of earthquakes for a given area, scaling the cost linearly by the number of spatial 
sites at which we need to record seismic intensities. Once the dataset is generated, we can feed out 
MLESmap technology and obtain fast analogues to the scenario simulations, which may render obsolete 
previous efforts toward real-time shake estimates. Early tests of the technology (Monterrubio-Velasco et 
al., 2021) show promising potential for our MLESmap, keeping substantial accuracy when compared to a 
subset of validation scenarios. Our approach (i.e., simulate, train, deploy) can result in the next generation 
of shakemap estimates, capturing physical information from wave propagation (directivity, topography) at 
the velocity of simple empirical ground motion prediction equations. Moreover, as our synthetic catalogues 
will never contain all possible future events, we aim at having models capable of successfully interpolating 
non-trained events accurately.  

For a proof of concept for this activity we have used one of the largest and most validated synthetic 
catalogues in collaboration with the SCEC, that is the CyberShake 15_4 Study (for details see URL in 
reference section), developed for the Los Angeles region in Southern California. A large number of synthetic 
events (~700 million hypothetical earthquakes) make this catalogue an ideal database with which to 
develop the MLESmap technology.  

In our particular application, the problem to be solved has been identified as a regression formulation 
where the objective is to infer the ground motion proxies measured in Pseudo Spectral ground Acceleration 
(PSA) for different periods at different sites or locations over the subsurface. To reach the objective we 
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select the Random Forest (RF) (Cutler et al., 2012) regressor integrated in the dislib (Álvarez Cid-Fuentes et 
al., 2019) and the Neural Network (NN) through the EDDL (see URL in reference section) package.  

The RF regressor was implemented and optimized in the dislib package based on the needs of the MLESmap 
in the first half of this project. During the first interaction of Task 6.3, continuing work with the dislib 
developers has been done to improve the capacities of the algorithm in order to optimize and provide the 
expected results. In particular, the inverse transform scaler method was implemented to solve the need to 
convert the ML inferences into the appropriate physical units after training. Also, an optimization of the 
block size was performed in the RF regressor to improve the parallelizing in the algorithm due to the large 
dataset. Moreover, to execute the RF hyperparameter searching through the Grid Search method, a 
splitting of the parameters in different executions using a total of 16 nodes of the MareNostrum4 was done 
to improve the time-to-solution due to the large dataset.  

Regarding the NN algorithm also chosen to solve this application, an effort has been made to determine a 
suitable network topology for the selected dataset. In order to achieve this, we started with a collection of 
basic multilayer perceptrons (MLPs), with different numbers of layers and neurons per layer. Several 
techniques have also been tested such as 1) regularization, data normalization, and batch normalization in 
order to tackle the problem of non-generalization of neural networks; 2) dropout and different activation 
functions, for the problem of vanishing and exploding gradients; and, finally, 3) different learning rate 
schedulers to deal with the local minima deadlock optimization problem.  After carrying out different tests 
with a reduced data set, the best neural network topology was determined to be an MLP with 4 hidden 
layers, and 64, 128, 128, and 64 neurons per layer, respectively; post-batch-normalization (after the 
activation function); a softplus activation function for the hidden layers; and an Annealing Warm learning 
rate scheduler.  

The proof of concept of the MLESmap developed in this activity including the network topology and the 
best hyperparameters for RF and NN algorithms will be applied in the second phase of this project for the 
Iceland region proposed as Use Case in the Deliverable 6.2 (see URL in reference section).  

 

UCIS4EQ Activity 5: Re-structuring of data management of the UCIS4EQ service (BSC, ETH). 

In order to facilitate the implementation of new regions in UCIS4EQ, the code required significant 
restructuring. As the concept of the workings of the service changed with development, many of the tools 
were run directly on the cluster and with the cluster serving as a data repository - as opposed to the initial 
idea of only the HPC-intensive jobs running on the cluster. The data transfers to and from the cluster have 
proven to be too time consuming for high-resolution runs and therefore many services are sent to the HPC 
cluster, with some data residing directly there. This adaptation, however, resulted in a convoluted structure 
of implementing new test cases. 

UCIS4EQ, therefore, has been restructured to accommodate for the HPC and for the B2DROP data 
repository in a coherent way, allowing to implement new test cases with ease and facilitating service 
deployment. The main changes include: 

• Collapsing the definition of domains and regions to a single regional entity. This is with mesh-
masking in mind for future developments (likely beyond the eFlows4HPC project), where the mesh 
will be for a large region and the service will mask out most of the mesh, leaving only a small mesh 
around the given event.  

• Including folders in the StaticDataMapping, which can now link to both specific files and to folders. 
The UCIS4EQ is also able to check the content of the remote folders for each region for correct files.  

• Application-defined folder pattern, with the Salvus-appropriate folder pattern currently available. 
• The definition of a specific execution policy for the maximum frequency (e.g. highest available) and 

source ensemble method selection. 
• The restructuring with the per-use-case coherent data structure forms a basis for the second phase 

of the eFlows4HPC project, where we expect to use the eFlows4HPC tools to facilitate the 
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deployment of the service that includes an automatic data upload to the HPC cluster. Further 
requirements which necessitate a thorough evaluation within the context of the eFLows4HPC 
software stack and a subsequent definition of the underlying mechanism include an automatic data 
sync with the main repository, as well as a final file-check at runtime that makes sure that all files 
are available (or sync and upload for the main repo if not available). 

 

Summary of T6.3 for UCIS4EQ 

In the table below we summarize the above activities and highlight the status of the WF and of the different 
components prior to the project and reached at the first iteration.  

 

Table 1. Status of the earthquake WF first iteration and components  

Workflow  Status before project  Phase I status  

UCIS4EQ  

(Activity 1 and  

Activity 5) 

No integrated WF manager; only 
a sequential WF manager 
emulator. 

  

Difficult integration of new 
regions. 

PyCOMPSs WF manager 
integrated in the full service and 
a mock-up version released that 
demonstrates the dependencies 
between inputs and outputs of 
the different microservices. 

  

Restructuring of the data 
management, which allows for 
easier use-case implementations 
and forms a basis for further 
work in phase 2 of the project 
on automatic deployment.  

Components / Building Blocks  Initial status  Phase I status  

ML / AI   

(Activity 4) 
None  Proof of concept developed as a 

stand-alone tool.   

SeisEnsMan  

(Activity 2) 
Prototype used in the Tsunamis 
workflow.  

Adaptation of the SeisEnsMan 
for earthquakes and porting to 
Docker for integration with 
UCIS4EQ.  

Earth Models  

(Activity 3) 
None  

Integration of the global 
Collaborative Seismic Earth 
Model within the Salvus service 
of UCIS4EQ, enabling velocity 
model extraction for any desired 
region directly on the 
computational mesh. 
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Next Steps of T6.3 for UCIS4EQ 

Activity 1 and 5:  We are going to focus on data management through the Data Logistic Services, streaming 
data source, HPC job management through PyCOMPSs, workflow malleability, and execution robustness. 
Moreover, in the 2nd iteration the UCIS4EQ requirements of the eFlows4HPC software stack will be revised 
in order to account for the ongoing evolution of the service. 

Activity 2: In the 2nd iteration we need to develop a prototype for Uncertainty Quantification incorporated 
in Block 8 (see Fig. 1) from the source ensemble developed in the 1st iteration.  

Activity 3: We will attempt to refine selected regional models with short-period full-waveform inversion 
(FWI), provided that the available seismic data allows for further reductions in the misfit. We will then 
assess the impact of such model refinements on the ground shaking synthetics. 

Activity 4: We aim to set up the MLESmap methodology for the South Iceland Region. The activity can be 
subdivided into two stages: first, the generation of a database, and second, the ML training is based on the 
DA/ML libraries of the eFlows4HPC software stack optimized for execution in HPC environments. The 
models will be integrated in the UCIS4EQ workflow as part of Block 7 (see Fig. 1). 

 

3.2. The Tsunami Workflow (PTF/FTRT)  
The Tsunami Workflow (PTF – Probabilistic Tsunami Forecast/FTRT - Faster Than Real Time) seeks to provide 
a forecast of tsunami impact following a large offshore or near-shore earthquake. The uncertainty in the 
source is dealt with by considering a (potentially very large) ensemble of earthquake scenarios. For each 
such scenario, an efficient numerical simulation needs to be performed in which the impact on the 
coastlines of interest is calculated. Just as numerical weather prediction generates a probabilistic forecast 
based on the outputs from multiple ensemble members, PTF calculates a probabilistic prediction of tsunami 
impact based upon the outputs of the individual simulations and their scenario probabilities. The complete 
workflow is displayed in Figure 2. 

For Iteration 1- Phase 2 (M7-M20), we simplified the overall workflow foreseen in Deliverable 6.1 by 
defining 5 sequential tasks, hereinafter called STEPs, as reported in Figure 2. This simplified workflow 
includes: 

• Step1: definition of the ensemble of scenarios to be modelled, based on seismic source uncertainty 
• Step2: simulation of tsunami sources in the ensemble 
• Step3: post-processing of single scenario output and production of PTF output files 
• Step4/5: aggregation of the results and visualization 

In the following, we describe the single components. 

• STEP 1 – Ensemble initialization    

In STEP 1, we initialize in real-time the ensemble that manages the uncertainty on the seismic source for 
the Probabilistic Tsunami Forecasting (PTF). This typically happens few minutes after the earthquake, when 
the initial magnitude and hypocentral location become available. The ensemble may potentially be updated 
with time, as new information becomes available. The methodology behind the ensemble definition is 
described in Selva et al. (2021). STEP 1 takes as input the main earthquake parameters and provides as 
output a list of scenarios to be simulated in STEP 2 and a list of probabilities to be applied in the aggregation 
of the PTF, in STEPs 4/5. Both files are txt ASCII files. 

The starting point for the STEP 1 code was the Matlab implementation developed in Selva et al. (2021) and 
available at https://github.com/INGV/matPTF. From this code, a version isolating STEP 1 has been derived 
and included in the PTF workflow developed in the ChEESE project (see URL in References section). Both 
versions are entirely in MATLAB and cannot be run in an HPC server. Thus, they have always been run in a 

https://github.com/INGV/matPTF
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separate server, and the STEP 1 output transferred to a HPC server for execution of the simulations in STEP 
2. 

 

 
Figure 2: PTF/FTRT workflow implementation for Iteration 1- Phase 2 compared with its final implementation foreseen for 

Iteration 2, as described in Deliverable D6.1.  

 

These original versions were also entirely based on the method described in Selva et al. (2021). This method 
defines pretty large ensembles, with a number of members that ranges from tens to hundreds of thousands 
of members. This allows a simplification of as much as possible of all the remaining parts of the workflow, 
to decrease as much as possible the computational effort of individual simulations. 

In Iteration 1- Phase 2, we ported the original codes to Python, for portability and so that STEP 1 can be 
easily run on the same server on which the subsequent steps are run. The initialization of the ensemble 
depends only on small files defining the main earthquake characteristics. This enables an updating of the 
ensemble when new information becomes available, as the code may be rerun locally simply updating a 
few input parameters, providing an updated set of output files (scenario list and probabilities), enabling a 
new aggregation at STEPs 3/4. This will become fundamental in Iteration 2 – Phase 3, when the updating of 
the ensemble will be fully implemented in the workflow.  

This new version of STEP 1 in Python adds also a new management of the uncertainty on the source 
parameters for the definition of the ensemble, enabling full control on the size of the ensemble and a 
significant reduction of the number of required simulations to obtain a satisfactory description of source 
uncertainty.  
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Control of the ensemble size is fundamental to better planning and management of the use of resources 
within the WF. This was only partially possible in the previous versions of STEP 1 (though the parameter 
sigma: see Selva et al. 2021) and, in these versions, the exact number of simulations was not directly 
controlled, nor could be reduced below a given threshold. Now, the number of simulations is required in 
input.  

A new approach toward the definition of the ensemble members has been adopted to obtain a more 
efficient quantification of the uncertainty based on a smaller number of ensemble members. The procedure 
has been tested for several past earthquakes using the precomputed simulations adopted in Selva et al. 
(2021) and derived from the NEAMTHM18 hazard model (Basili et al. 2018, 2021). The selected past events 
included two of the case studies adopted in eFlows4HPC (Deliverable D6.2), that is, the 2003 Mw6.8 
Zemmouri-Boumerdes and the 2017 Mw 6.6 Kos-Bodrum earthquakes. The ability to converge faster 
towards the full description of the source uncertainty with a smaller number of simulations will also enable 
a modification of the subsequent steps, allowing production of a PTF with a smaller number of resource-
intensive simulations. 

In next iteration, we anticipate an update to STEP 1 by allowing revision of the list of scenarios and their 
probabilities considering new information, like for example new source information (e.g., focal 
mechanisms) or tsunami observations (e.g. accelerograms), and by developing a tool monitoring the level 
of convergence of uncertainty quantification. These new functionalities are already in development. 

STEP 1 call has been finally embedded in PyCOMPSs, to integrate this step into the overall workflow 
managed through PyCOMPSs. STEP 1, as a non-time-consuming part of the workflow, is called as one single 
task providing the files required for STEP 2. 

• STEP 2 – Tsunami simulation  

STEP 2, in charge of performing the simulations using Tsunami-HySEA Monte Carlo version (Macías et al, 
2019 & Escalante et al, 2017), has been modified in order to take advantage of the orchestration provided 
by PyCOMPSs. Once STEP 1 provides the ensemble file with the scenarios to be simulated, the first task is 
carried out: grouping the scenarios into different chunks. This is one of the substantial improvements with 
respect to the previous state of the workflow, since with the implementation in PyCOMPSs, this task is 
carried out in parallel for each one of the chunks, instead of being processed sequentially. 

For each of these chunks, the execution task of the Tsunami-HySEA simulator is established. This one is 
called through a COMPSs MPI invocation, allowing the user to set the constraints for each run, such as the 
number of cores required explicitly or indicate that the value of a constraint is specified on an environment 
variable. 

With this new implementation of the core of STEP 2, it is possible to launch a single job to the queue system 
that implicitly carries out the parallel execution of as many simulations as the user indicates at the beginning 
of the WF, dividing into internal jobs, and allowing the traceability of each processes involved to be 
observed. 

• STEP 3 – Simulation post-processing 

STEP 3 of the workflow exploits the features provided by the Ophidia framework (see URL in References 
section) to compute the following operations for each of the time series output by the tsunami simulations. 
These relate to the wave amplitude variable: the maximum, the minimum, the peak-to-trough, the green's 
amplification and the removal of the offset with respect the sea level before the tsunami, if needed. 

The starting point for the STEP 3 code consisted of two Python scripts developed in the project ChEESE. The 
first script read the individual simulation results (.nc or NetCDF files), extracting the relevant information 
and performing several other operations, and saving the extracted information in new .nc files. The second 
script read all the individual extracted .nc files to produce a single .nc file to be given in input to the PTF 
aggregation of STEP 4/5. 
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The use of the Ophidia framework, due to its capabilities to manage and manipulate NetCDF files using an 
in-memory approach, represents an improvement with respect to the first python-based version which 
instead required continuous I/O operations from disk to save and then retrieve the outputs for the final 
merging phase. 

In more detail, starting from a large number of files (one for each tsunami simulation), some postprocessing 
operations are performed in-memory on groups of files and a single file for each computed variable is saved 
on disk (for a total of 8 files for each group) before a final merge of all the results belonging to the group. 
Figure 4 provides a schematic representation of the workflow defined by this step. 

 

 
Figure 3: Example of graph for the STEP2 minimal workflow with an ensemble of 8 scenarios using n=2 as the number of scenarios 

per chunk. 

 

 
Figure 4: Internal steps for the HPDA-based indicators computation block 
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Another improvement is the workflow orchestration by means of PyCOMPSs exploiting parallel execution. 
In Figure 5 is shown the PyCOMPSs tasks graph generated at the end of the workflow. For the sake of clarity, 
the graph shows the execution of the workflow for a single group of two scenarios; in case of multiple 
groups the whole graph will be repeated. 

 

 
Figure 5: PyCOMPSs task-dependency graph for the STEP3 workflow 

 

The code showed at Figure 6 contains the declaration of tasks in PyCOMPSs and the invocation of them on 
864 files (in groups of 72 scenarios). 

The first task computes the import into Ophidia of the bathymetry variable that is used in the subsequent 
task related to the Green Law formula. 

The OphidiaImport() task performs the import into Ophidia of the Wave amplitude related to a scenario, in 
order to: (i) compute the maximum and minimum with and without offset using the reduce operator, (ii) 
the peak to trough (i.e., the difference between maximum and minimum divided by two) using the 
intercube operator and the mul_scalar primitive and (iii) then the indices related to the Green Law. All these 
operations are computed in the other tasks. 

The OphidiaMerge() task regards the merge of the previous created datacubes adding the scenarios 
dimension for each calculated variable and exporting the result as a NetCDF file, while the last task puts all 
the variables together in the same file to obtain the result file. 

 

#Declaring tasks 
@task(returns=object) 
def importBathymetry(): 
    bath = cube.Cube.importnc2(src_path= 'bathymetry.nc', measure='deformed_bathy', 
imp_dim='time', exp_dim='grid_npoints') 
    bath_reduce=bath.reduce(operation="max") 
    depth = bath_reduce.apply(query="oph_math(oph_math(oph_predicate('x-
1','<0','1','x'),'SQRT'),'SQRT')") 
    return depth 
@task(returns=object) 
def OphidiaImport(scenario, container): 
    ts = cube.Cube.importnc2(src_path= filePath, measure='eta', imp_dim='time', 
exp_dim='grid_npoints') 
    return ts 
@task(returns=str) 
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def OphidiaMax(ts): 
    ts_max = ts.reduce(operation="max") 
    return ts_max.pid 
@task(returns=str) 
def OphidiaMin(ts): 
    ts_min = ts.reduce(operation="min") 
    return ts_min.pid 
@task(returns=object) 
def OphidiaOffset(ts): 
    firstRow=ts.subset(subset_dims="time",subset_filter="1",subset_type="index") 
    ts0 = firstRow.apply(query="oph_extend('OPH_FLOAT','OPH_FLOAT',measure,961)") 
    ts_off = ts.intercube(cube2=ts0.pid, operation='sub') 
    return ts_off 
@task(returns=str) 
def OphidiaP2t(ts_max_pid, ts_min_pid): 
    diff = ts_max.intercube(cube2=ts_min_pid,operation="sub") 
    ts_p2t = diff.apply(query="oph_mul_scalar(measure,0.5)") 
    return ts_p2t.pid 
@task(returns=str) 
def OphidiaGL(cube_pid, depth): 
    gl_cube = ts_cube.intercube(cube2=depth.pid,operation="mul") 
    return gl_cube.pid 
@task(returns=object, cubes=COLLECTION_IN) 
def OphidiaMerge(cubes, name, group): 
    pids = '|'.join(cubes) 
    ts_merge = cube.Cube.mergecubes2(cubes=pids, dim="scenarios") 
    ts_merge.exportnc2(output_name=name+str(group)) 
cube.Cube.script(script='rename_variables_group.sh',args=name+'|'+str(group) 
    return ts_merge 
@task(dependencies=COLLECTION_IN) 
def OphidiaCDOMerge(group, scenarios, container, dependencies): 
    cube.Cube.script(script='merge_files_group.sh', args=str(group)+'|'+str(scenarios)) 
  
#Invoking tasks 
depth = importBathymetry() 
group=0 
scenarios=2 
for j in range(0,864,72): 
    group+=1 
    for i in range(scenarios): 
        #Import of all scenarios files 
        datacubes[i] = OphidiaImport(str(i+j+1).zfill(3), container) 
        ts_max_cubes[i] = OphidiaMax(datacubes[i]) 
        ts_min_cubes[i] = OphidiaMin(datacubes[i]) 
        ts_off_cubes[i] = OphidiaOffset(datacubes[i]) 
        ts_max_off_cubes[i] = OphidiaMax(ts_off_cubes[i]) 
        ts_min_off_cubes[i] = OphidiaMin(ts_off_cubes[i]) 
        ts_p2t_cubes[i] = OphidiaP2t(ts_max_cubes[i], ts_min_cubes[i]) 
        ts_max_gl_cubes[i] = OphidiaGL(ts_max_cubes[i], depth) 
        ts_max_off_gl_cubes[i] = OphidiaGL(ts_max_off_cubes[i], depth) 
        ts_p2t_gl_cubes[i] = OphidiaGL(ts_p2t_cubes[i], depth) 
    #Merge all scenarios 
    ts_max_cube = OphidiaMerge(ts_max_cubes, "max", group) 
    ts_min_cube = OphidiaMerge(ts_min_cubes, "min", group) 
    ts_max_off_cube = OphidiaMerge(ts_max_off_cubes, "max_off", group) 
    ts_min_off_cube = OphidiaMerge(ts_min_off_cubes, "min_off", group) 
    ts_p2t_cube = OphidiaMerge(ts_p2t_cubes, "p2t", group) 
    ts_max_gl_cube = OphidiaMerge(ts_max_gl_cubes, "max_gl", group) 
    ts_max_off_gl_cube = OphidiaMerge(ts_max_off_gl_cubes, "max_off_gl", group) 
    ts_p2t_gl_cube = OphidiaMerge(ts_p2t_gl_cubes, "p2t_gl", group) 
    #Merge all files in a single output file 
    OphidiaCDOMerge(group, scenarios, container, [ts_max_cube, ts_min_cube, ts_max_off_cube, 
ts_min_off_cube, ts_p2t_cube, ts_max_gl_cube, ts_max_off_gl_cube, ts_p2t_gl_cube]) 

 

Figure 6: Ophidia tasks declaration and invocations 
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• STEPs 4/5 – Aggregation and Visualization  

In STEPs 4/5, the Probabilistic Tsunami Forecasting (PTF) is produced and visualized by aggregating the 
results of individual simulations produced in STEPs 3 and 4, and the probabilities produced in STEP 1.  

The starting point for STEPs 4/5 consisted of MATLAB codes developed in Selva et al. (2021) and available 
at Section 4 as the name matPTF. From this code, a version isolating STEPs 3/4 has been derived and 
included in the PTF workflow developed in the project ChEESE. Both versions are entirely in MATLAB and 
cannot be run in a HPC server. Thus, they have been always run in a separate server, manually transferring 
the output of STEPs 2 and 3 from the HPC server to a local server.  

In Iteration 1- Phase 2, we ported the original codes to Python, so that also these steps can be easily run in 
the same server in which all the previous steps are run. This implies that the main PTF results will not 
depend of data transfer, allowing a better integration and organization of all output files. In this phase, a 
minimum visualization has been developed, while more advanced tools are foreseen in next iteration. 

• ML / AI: Tsunami Modelling Emulation  

Several ML use cases have been explored in order to predict results of tsunami simulations. Specifically, we 
have predicted different alert levels (a classification problem), and maximum water heights and arrival 
times (a regression problem). In both cases, multilayer perceptron (MLP) networks are used, and the input 
of the network are the nine Okada parameters (longitude, latitude, depth, length, width, strike, dip, rake, 
and slip) of the earthquake that causes the tsunami. An early stopping strategy is employed to prevent the 
model from adjusting too much to the training sets. 

For the classification problem, we have considered tsunamis in the GC06 region of the Gulf of Cadiz, as 
defined in Matias et al. (2013), where the nine Okada parameters vary within the ranges of plausible values 
for this region, according to Matias et al. Four alert levels have been considered depending on the maximum 
water height: green (<1 cm), yellow (>1 cm and <30 cm), orange (>30 cm and <1 m), and red (>1 m). The 
finest spatial resolution used is 40 m. We have trained two MLP networks for predicting the alert level in 
the Spanish cities of Cadiz and Rota, respectively. A total of 110,000 samples have been obtained using 
Tsunami-HySEA. 

We have obtained precision and recall values between 91.6 and 96,1 % for all the alert levels in the test 
sets using the best model, with an average value greater than 93 %. Using ensembles of the three best 
models for each city we have been able to improve the results between 92.4 and 96.7 %, with an average 
value greater than 94 %. The inference time of these ensembles is very fast, lasting approximately 150 ms 
in a Tesla A100 to infer the results of 2000 samples. 

For the regression problem, we have taken as a reference the Caribbean 2013 LANTEX scenario (see the 
LANTEX 13 reference), where the Okada parameters vary around the values associated with this scenario. 
Two MLP networks have been used to train two models to predict the maximum water height and the 
arrival times respectively of the tsunamis, at 6 points located near the following coastal cities of Puerto 
Rico: Mayagüez, Guánica, Ponce, Salinas, Arroyo, and the Palmas del Mar resort. The finest spatial 
resolution is 8 arc-sec (around 240 meters). A total of 16,000 samples have been obtained using Tsunami-
HySEA. 

Using the best model, we have obtained mean errors of 1.0 cm and 5.8 sec, and maximum errors of 9.4 cm 
and 3.3 min. Using ensembles of the three best models for each network, the mean errors have improved 
to 0.9 cm and 5.0 sec, and the achieved maximum errors have been 8.3 cm and 3.3 min. As a reference, the 
maximum water height achieved at each point in the samples ranges between 113.3 and 217. 1 cm. The 
inference times using a Tesla A100 are the same as in the classification problem. 

All the presented results for both classification and regression problems have been obtained using the Keras 
library (Chollet et al, 2015). Both problems have also been successfully implemented and tested using EDDL 
(C++ version). The early stopping strategy and the reduction of the learning rate on plateau have been 
implemented in EDDL, since these features are not supported in EDDL by default. 
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Finally, MPI codes have been developed for both classification and regression problems to run multiple 
EDDL trainings in parallel, where each training runs in one GPU. At the end of the execution, the best 
obtained model, which is selected based on the results achieved in the validation set, is saved in ONNX 
format. 

• ML / AI: Tsunami Forecasting exploiting Regression and Classification Trees  

This activity is aimed at developing machine learning approaches based on regression and classification 
trees, to model and forecast tsunami simulation results. The goal is to exploit predictive models to (i) reduce 
the number of simulations and (ii) explore how input values affect output results. A preliminary 
experimental evaluation has been performed on the dataset of precomputed scenarios for the M6.8 2003 
Zemmouri-Boumerdes earthquake and tsunami (one of the project’s case studies in the Mediterranean 
area), retrieved from Selva et al. (2021). The results of this experiment show a good accuracy in maximum 
wave heights forecasting. 

In particular, each simulation data instance related to the considered Tsunami events is composed of 1,119 
features:  12 values (simulation input parameters) describing the geometry and the kinematic of faults 
generating the earthquake (region, magnitude, longitude, latitude, depth of the top, strike, dip, rake, area, 
length, average slip, probability), and 1,107 values (simulation outputs) corresponding to the maximum 
heights (hmax) of tsunami waves estimated at several target points in front of the coast close (i.e., 1,107 
target points). 

The main goal of the machine learning approach we developed has been training a specific predictive model 
Mi for each i-th target point (i=1, …, 1,107), and exploiting such models to forecast the maximum height of 
waves brought by the tsunami at the target locations.  

The experimental evaluation performed on the Zemmouri-Boumerdes dataset (15,408 records; Selva et al. 
2021) provided a good prediction accuracy. The training set and test set have been respectively populated 
by 10,786 and 4,622 instances (70% and 30% of the whole dataset). The code has been implemented by 
using the Scikit-learn library (https://scikit-learn.org) and the results (on the test set) have been split by 
considering differing scenarios w.r.t. on the maximum wave height. The achieved prediction accuracy 
showed a high accuracy with values ranging from 92% (for wave heights < 0.1 m) to 77% (for wave heights 
> 2.5 m and < 3.0 m). 

Those preliminary results are very promising and further experimental evaluation will be carried out to 
assess the proposed learning techniques. 

Summary of T6.3 for PTF/FTRT WF 

The initial and the final implementation of the workflow and its component is reported in table below.  

 

Table 2: Status of the tsunami WF and its components 

Workflow Status before project Phase I status 

PTF/FTRT The starting HPC workflow is derived 
from ChEESE project. It consisted of a 
non-automized sequence of Matlab, 
Python, and KUDA scripts, mainly 
controlled by bash files. No workflow 
manager was implemented. 

PyCOMPSs WF manager 
integrated in the different steps 

that compose the tsunami 
workflow. 

 

Full execution in an HPC 
environment. 

Components / Building 
Blocks 

Initial status Phase I status 
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Step 1: Ensemble 
definition 

Matlab scripts derived from Selva et 
al. (2021), with large ensembles (>10 k 

events). 

Python scripts with enhanced 
sampling and reduction of the 

ensemble size. The python calls 
are embedded in PyCOMPSs. 

Step 2: Tsunami 
simulation 

Bash scripts for sequential reading of 
the scenario ensemble into chunks. 

Bash scripts for the sequential launch 
of jobs to the queue system.  

PyCOMPSs embedded task to 
generate chunks and parallel 

launching of the simulator 
Tsunami-HySEA. One unique job 

orchestrates the entire set of 
simulations. Added Power9 

machine at BSC as cluster for 
end-to-end executions of the 

workflow. 

Step 3: Simulation post-
processing 

Python scripts extracting parameters 
from single simulations 

PyCOMPSs orchestration by 
using Ophida framework to 

manage NetCDF input/outputs 
files. 

Step 4/5: Aggregation and 
visualization 

Matlab scripts derived from Selva et 
al. (2021) 

Python scripts based on OPHIDA 
output netCDF file 

Tsunami Emulator (Block 
#4) 

None Proof of concept developed  

Tsunami Forecasting 
(Block #4) 

None Experimental evaluation stage 

 

Next Steps of T6.3 for PTF/FTRT WF 

At the time of the redaction of this deliverable, the assembly of the steps that contemplate the tsunami 
workflow is being carried out with the aim of using a single script in PyCOMPSs that orchestrates the end-
to-end execution, which is planned for the beginning of M21. (Steps 1 & 2) 

The Ophidia team is already working on the workflow, with the next step being testing for one of the use 
cases. For next iteration, we will work on an efficient cloud storage of model outputs to enable deeper 
exploitation of simulation results. (Steps 3 & 4) 

In common with Steps 1, 2 and 3, one of the next priority steps is to include in the WF the mechanisms for 
automatic detection of execution errors, which allow it to be relaunched from the moment it occurs, giving 
it the ability to be resilient to multiple types of failures, a feature that currently does not have. 

Regarding the use of ML tools in the workflow, the proofs of concept developed show satisfactory results 
that will mark the roadmap to follow for their implementation within the workflow that will be incorporated 
in the next iteration. 
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4. Workflows codes access 
Workflows  

Tsunami PTF/FTRT https://github.com/carsanlin/workflow-
registry/tree/main/iteration1-tsunami-wf 

UCIS4EQ https://gitlab.com/case-geosciences-public/eflows/ucis4eqMockup 

Codes  

SeisEnsMan https://gitlab.com/eflows4hpc/SeisEnsMan 

matPTF https://github.com/INGV/matPTF 

 

5. Conclusions  
This deliverable describes the current state of development of the workflows corresponding to Pillar III, 
based on tasks T6.3 and T6.4, with the improvements in the development and adaptation of workflows, 
both for earthquakes and tsunamis, by providing a common PyCOMPSs orchestration to easily integrate 
into HPC environment and turn them into an operational level. It includes the aspects that represents a 
significant progress in workflow development by comparing the status before and after starting the project. 
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- EC – European Commission 

- FTRT – Faster Than Real Time 

- HPC – High Performance Computing 

- KPI – Key Performance Indicator 

- MLESmap – Machine-Learning based Estimator for ground motion Shaking maps 

- MS – Milestones 

- NN – Neural Network 

- NEAMTHM18 - NEAM Tsunami Hazard Model 2018 

- PSA – Pseudo Spectral Acceleration 

- PTF – Probabilistic Tsunami Forecasting  

- RF – Random Forest 

- SCEC – Southern California Earthquake Center 

- UCIS4EQ – Urgent Computing Integrated Services for EarthQuakes  

- WF – Workflow 

- WP – Work Package 
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